
Model Predictive Control for Cooperative Hunting
in Obstacle Rich and Dynamic Environments

Jacky Liao and Che Liu and Hugh H.T. Liu

Abstract—This paper studies the cooperative hunting prob-
lem, where a group of agents encircle a target while avoiding
collisions with each other and with obstacles in the environment.
The paper deals with obstacle rich environments and dynamic
(moving obstacle) environments by formulating the problem
as both a control problem and a planning problem. A model
predictive control (MPC) method is proposed which integrates
a multi-agent planner with the cooperative hunting objective
while also accounting for UAV dynamics. The effectiveness of
the proposed method is verified through a comparative analysis
with optimal reciprocal collision avoidance (ORCA), and then
validated through experiments with quadrotor UAVs. Using the
proposed method, agents no longer get stuck in local minima
for obstacle rich environments and capture the target faster
with shorter trajectories in moving obstacle environments.

I. INTRODUCTION

Control of multi-agent systems is a popular topic in
robotics with various applications for UAVs, such as forma-
tion flight, surveying, and coordinated package delivery. The
methodology traces back to the theory of flocking behaviour
[1]. Agents in the flock follows a set of rules based on their
local observation. The rule of alignment matches the speed
and heading direction of neighbouring agents, and the rules
of cohesion and separation allows agents to group without
risking collision. By following these simple rules, the agents
behave as a collective and express emergent behaviour.

Solutions based on flocking methods scale more easily
with the number of agents compared to centralized methods,
as the agents use mainly local information. However, flocking
rules need to be modified based on their necessity for the task
at hand, and global signals may need to be added to enforce
the objective. For example, alignment and cohesion may not
be necessary for surveying a wide area, and additional rules
may be added for maximizing coverage. Leader-follower
methods use a hybrid, where leader agents receive global
information, and follower agents use local information.

This paper focuses on the cooperative hunting problem.
The objective is to coordinate a group of agents to surround
a static or moving target. Cooperative hunting is seen in
nature by pack hunters such as wolves and chimpanzees,
with the goal being to capture prey. Due to its connection
with nature and with multi-agent systems, many existing
solutions are biologically inspired or derived from flocking
theory. Weitzenfeld et al. [2] developed a leader-follower
algorithm based on wolf pack hierarchies. The leader agent

Authors are affiliated with the Flight Systems and Control
Lab, Institute of Aerospace Studies, University of Toronto,
North York, Canada. jacky.liao@flight.utias.utoronto.ca,
charlesl.liu@mail.utoronto.ca, liu@utias.utoronto.ca

is designated as the alpha wolf and prioritizes target capture,
while the followers are beta wolves and maintain a formation
behind the alpha wolf. Muro et al. [3] simulated wolf hunt-
ing behaviour without imposing any hierarchical structure.
Instead, the agents move toward the target until a minimum
safe distance is reached, and afterwards move away from
other agents who are also within the safe distance. Similarly,
Madden et al. [4] modeled wolf hunting behaviour as a set
of foraging states with transition probabilities rather than as
a social hierarchy.

Many methods enforce target surrounding by formulating
the encirclement objective in polar coordinates, where the
agents maintain a desired distance away from the target and
a desired angular separation with other agents. These works
therefore share same objective, but differ in their control
strategy. Examples of such strategies include nonlinear model
predictive control [5], Lyapunov based control [6], and
decentralized control adapted to different robot types [7]. For
multi target cases, auction algorithms [8] and hybrid dynamic
task allocation [9] can be used for assigning targets to each
hunter. Wu et al. [10] predicts the target motion and used the
prediction to optimize the agent encirclement points. Yao et
al. [11] developed a control law which allowed any arbitrary
desired angular spacing among agents in 3D.

The methods presented are tested in simple scenarios
containing few obstacles. These algorithms use some form of
local planning where nearby obstacles are considered, but not
the entire environment. Notable examples of such algorithms
for multi-agents are potential field based methods [12],
flocking algorithm modifications [13], and more recently
optimal reciprocal collision avoidance (ORCA) [14].

However, such methods struggle in more complex scenar-
ios such as obstacle rich environments and moving obstacle
environments. In the former case, agents can get stuck in
local minima where the obstacles block the path to the target.
In the latter case, the agents produce poor trajectories as they
do not plan for future obstacle locations. To better resolve
these complex scenarios, the agents must plan ahead in the
environment. This extends the cooperative hunting problem
to a cooperative path planning problem.

Examples of multi-agent path planning algorithms include
extensions to A* search for multiple agents by decoupling
the problem into single agent searches [15]. The agents
plan in an assigned priority sequence and store their path
into a reservation table, which is taken into account by the
subsequent agents. Another approach is to have agents first
plan independently, and in the event of a conflict, lower
priority agents shift their path to make way for higher priority

978-1-7281-9077-8/21/$31.00 ©2021 IEEE

2021 IEEE International Conference on Robotics and Automation (ICRA 2021)
May 31 - June 4, 2021, Xi'an, China

5089

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(I

C
R

A
) |

 9
78

-1
-7

28
1-

90
77

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

R
A

48
50

6.
20

21
.9

56
10

54

Authorized licensed use limited to: The University of Toronto. Downloaded on May 26,2023 at 22:32:38 UTC from IEEE Xplore. Restrictions apply.

agents [16]. The planning problem can also be formulated
as a decoupled iterative sequential convex programming
problem. Optimal agent actions are produced with linearized
collision constraints at each timestep [17]. Finally, Hönig and
Ayanian [18] used Bézier curve interpolation to optimize
trajectories generated from graph based planning, and to
prevent inter-agent collisions, hard margin SVM is used to
generate safe corridors.

The contribution of this paper is to combine cooperative
hunting with multi-agent planning using model predictive
control (MPC). In obstacle rich environments, the proposed
method will better avoid local minima, and in moving
obstacle environments, the agent will capture the target faster
by minimizing obstacle interaction. The proposed method
is tested and compared with ORCA in simulation, and is
afterwards validated in experiment with quadrotor UAVs.

II. PROBLEM FORMULATION
This paper focuses on the encirclement of a single target in

2D environments which contain obstacles. The motion and
behaviour of obstacles and target is assumed known along
with their full state.

A. Agent Dynamics
The agents are quadrotor UAVs where the inputs are

desired roll and pitch denoted Dq and D\ . Actuation and
communication delay is modeled using a first order approx-
imation parameterized by U. Modelling such delay allows
for the design of more robust controllers compared to using
simple double integrator models, which is necessary when
dealing with multiple UAVs in cluttered environments.

The dynamics can be represented more conveniently in
terms of acceleration and jerk. Let (DG , DH) be the desired
accelerations in the x-y directions. Linearization at constant
height and zero attitude gives rise to the following state
space, which is discretized in time afterwards yielding ma-
trices (Fx,Fu).

DG = 6D\ DH = −6Dq (1)

x =
[
G H ¤G ¤H ¥G ¥H

]) u =
[
DG DH

]) (2)

¤x =

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 −U 0
0 0 0 0 0 −U

x+

0 0
0 0
0 0
0 0
U 0
0 U

u (3)

¤x = Ax+Bu (4)
xC+1 = FxxC +FuuC (5)

The parameter U can be determined using system identifi-
cation. This was done for the Crazyflie 2.1 quadrotor [19]
by approximating its attitude controller and actuation delay
through experimental data and analysis of onboard gains. It
was determined that U = 5.5759 and this value will be used
for the simulation and experiment sections.

This paper assumes that the linear model applies to any
direction in the x-y plane, and that the control delay is equal

in all directions of travel. This assumption allows for non-
zero yaw in practice, as the actual UAV inputs can be rotated
from (DG , DH).

B. Encirclement Criteria
The encirclement criteria can be formulated in polar

coordinates centered at the target. The target is located at
(G3 , H3), and the polar coordinates of agent 8 relative to the
target is as follows.

A8 =

√
(G8 − G3)2 + (H8 − H3)2 (6)

i8 = atan2(H8 − H3 , G8 − G3) (7)

The encirclement criteria is for the agents to reach a desired
radial distance A3 from the target as well as reach desired
angles Φ3 . This is measured using error tolerances nA and
nq .

|A8 − A3 | ≤ nA 8 = 1,2, . . . , # (8)
|i8 −i8,3 | ≤ ni Φ3 =

{
i1,3 , i2,3 , . . . , i# ,3

}
(9)

Φ3 contains the desired angles to the target which are equally
spaced apart, and is assigned based on the agent locations in
order to reduce the total distance traveled. Hence, Φ3 is a
permutation of angle assignments where each element i8,3
is a multiple of 2c/# . This paper assigns target angles by
minimizing the absolute angle difference using the Hungarian
algorithm. With this objective formulation, the agents to
spread out as they converge to their desired angles and
agent interaction is minimized. The alternative of assigning
goal locations equally spaced around the target generates
linear trajectories, which can lead to many undesirable agent
interactions. The capture time)8,2 is defined when agent 8
satisfies both bounds.

III. CONTROL STRATEGY
A. Target Encirclement

The encirclement objective can be solved using optimal
control and feedback linearization. Define the axis n8,A point-
ing outwards from the target to agent 8, and n8,i pointing in
its perpendicular direction. The encirclement error in the n8,A

direction is 48,A which is the difference to A3 . The error in the
n8,i direction 48,i is the arc length to the desired angle i8,3 .
The inputs (D8,A , D8,i) are the desired acceleration inputs in
the respective directions. Together, the error dynamics follow
the same state space dynamics (5) at a local level.[

D8,A
D8,i

]
=

[
cosi8 sini8
−sini8 cosi8

] [
D8,G
D8,H

]
(10)

u′8 = Ri8
u8 (11)

e8 =

48,A
48,i
¤48,A
¤48,i
¥48,A
¥48,i

=

A8 − A3
A8 (i8 −i8,3)
¤A8 − ¤A3

¤A8 (i8 −i3) + A8 (¤i8 − ¤i8,3)
¥A8 − ¥A3

¥A8
(
i8 −i8,3

)
+2 ¤A8

(
¤i8 − ¤i8,3

)
+ A8

(
¥i8 − ¥i8,3

)

(12)
e8,C+1 = Fxe8,C +Fuu′8,C (13)

5090

Authorized licensed use limited to: The University of Toronto. Downloaded on May 26,2023 at 22:32:38 UTC from IEEE Xplore. Restrictions apply.

As n8,A and n8,i change direction while the agent moves, so
do the inputs (D8,A , D8,i) in Equation (11) which maintains
the local linear system. To obtain a feedback controller, a
LQR method in discrete time is used, explained by the book
Dynamic Programming and Optimal Control in [20]. The
quadratic cost matrices for the error and input are (Ce,Cu)
which define the infinite horizon cost J8 for agent 8. The
typeface for the error is different since it is quadratic in the
polar coordinate error, but not quadratic in the Cartesian
error. On the other hand, it can be shown that the cost is
quadratic in the original Cartesian input u since u′ differs
only by rotation and Cu is a multiple of the identity matrix
and effectively only a scaling term.

Ce = diag(:A , :i , : ¤A , : ¤i , : ¥A , : ¥i) (14)
Cu = diag(:D , :D) (15)

J8 =
∞∑
C=0

e)8,CCee8,C +u′)8,CCuu′8,C (16)

The terms :A and :i scale the cost in the radial distance
and arc length distance. The ratio :A/:i was set between
1 to 2 since in the worst case, an agent must travel an arc
distance of half the circumference cA. The optimal gain K
to minimize J8 is obtained by solving the following discrete
time algebraic Riccati Equations (17, 18). This yields the
optimal input u′∗ which can be transformed back into desired
roll and pitch.

P = Fx
) PFx− (Fx

) PFu) (Cu +Fu
) PFu)−1 (Fu

) PFx) +Ce
(17)

K = −(Cu +Fu
) PFu)−1 (Fu

) PFx) (18)
u′∗8 =Ke8 (19)

Simultaneous encirclement can be enforced by penalizing
the relative radial distance. Suppose # agents surround the
target, the error in the radial direction is a joint term e

A
. The

underline notation represents terms which deal with treating
the agents jointly.

e
A
=

[
A1− A3 ... A# − A3

]) (20)

The relative radial distance cost JB is quadratic in e
A
through

matrix C
B
, which is weighted by :B and normalized by # .

JB =
:B

#

#∑
8=0

#∑
9=0
(A8 − A 9)2 (21)

=
:B

#
e)
A

−1 −1 . . . −1

−1 # −1
...

...
. . .

−1 . . . # −1

e
A

(22)

= e)
A
C
B
e
A

(23)

Including the simultaneous cost centralizes the control prob-
lem by coupling the agent states, and the same LQR control
can be formulated with the joint agent states and inputs.
The effect of the simultaneity cost can be seen in Figure
1, compared with trajectories without in Figure 2. The target

is located (3,2) with a desired surrounding radius of 1 m, and
an outer circle of radius 1.5 m is drawn as well to visualize
the simultaneous encirclement. The capture time difference
with additional simultaneous cost is 0.1 s, compared to 6.9 s
for the case without simultaneous cost. The agents converge
toward the target radius simultaneously for the former case,
whereas in the latter case the blue agent lags behind due to
traveling a longer distance which is not considered by the
others.

Fig. 1. Trajectories with additional simultaneous cost

Fig. 2. Trajectories without additional simultaneous cost

B. Planning For Obstacles
A multi-agent path planner generates trajectories which

avoid local minima and plan for future obstacle locations.
The planner used is based on the windowed hierarchical
cooperative A* algorithm (WHCA*), adapted to the coop-
erative hunting problem [15]. A single agent path planning
algorithm is used to generate an optimal trajectory to the
target, and its solution is then used as a heuristic to guide
the search for multiple agents. The single agent path planning
solution is a discretized 3D cost grid � (C, G, H) in spacetime,
defined over the following range.

C ∈ [CB , C 5] G ∈ [G<8=, G<0G] H ∈ [H<8=, H<0G] (24)

5091

Authorized licensed use limited to: The University of Toronto. Downloaded on May 26,2023 at 22:32:38 UTC from IEEE Xplore. Restrictions apply.

Each element in � represents the cost to the goal, and the
optimal trajectory starting at CB and ending at C 5 is the set of
points (C, G, H) which achieves the minimum cost. The agent
steps through positions in time with action 0 assuming 4-
connectivity in space. A cost 90 is incurred during state
transitions, with a time cost 9C between timesteps and a
stepping cost 9B between cells in space.

(G, H)C=+1 ← (G, H)C= + 0 (25)
0 ∈

{
(−ΔG,0), (ΔG,0),(0,−ΔH), (0,ΔH), (0,0)

}
(26)

90 =

{
9C if 0 = (0,0)
9B + 9C otherwise (27)

Locations occupied by obstacles and target correspond to a
cost of infinity and zero respectively. Future locations can be
determined if the obstacle motion model and target motion
model is known. For simplicity this paper uses a constant
velocity model for both, and with this setup the cost is
computed for every cell using dynamic programming.

Algorithm 1 3D Cost Grid Computation
Input: target and obstacle state at C = CB
Output: 3D cost � (C, G, H)

1: Step the obstacle and target over time to C = C 5 using
their motion models

2: Populate � with 0 at the target and ∞ at the obstacles
3: Run wavefront propagation on � (C = C 5 , G, H) starting at

the target location
4: Populate the remaining layers recursively

� (C=, G, H) =min
0
(� (C=+1, G, H) + 90) (28)

5: return � (C, G, H)

Using cost �, the optimal path for a single agent can be
computed recursively by searching forward in time for the
minimum cost. Given (C=, G, H), the optimal next point is
(C=+1, G∗, H∗).

(C=+1, G∗, H∗) = argmin
(C=+1 ,G′,H′)

�
(
C=+1, G

′, H′ | (G ′, H′) = (G, H) + 0
)
(29)

Path planning is done sequentially for multiple agents using
a ranking system. The agent with the highest rank plans first
and adds its path to �, the next agent does the same and
so on. As a result, subsequent agents obtain paths which
do not conflict with their higher ranking agents. To reduce
computation time, the agents only plan up to a time window
CF . The planning stages are summarized in Algorithm 2.

Algorithm 2 Multiagent Planner
Input: Cost �, agent positions, agent priority queue Q
Output: Set of paths P

1: for agent i in Q do
2: Search � up to time CF to obtain path ?8 for agent i
3: Add ?8 to P
4: Update � by setting elements occupied by ?8 to ∞
5: end for
6: Reset � back to its original before adding paths
7: return P

Algorithm 2 is further modified by changing the paths
added in step 3. The paths generated by the planner focuses
on reaching the target rather than surrounding, and does not
fully encapsulate the cooperative hunting objective. There-
fore, an agent should not use the planner if their path is
clear of obstacles and other agents. A path generated by the
control strategy should be added in place of the planner path.
The encirclement path can be obtained by stepping through
the encirclement control strategy with the agent state space
dynamics. Determining which path to add integrates the
multi-agent planner with the cooperative hunting objective.

C. Collision Avoidance
An emergency collision avoidance rule is required to

handle errors caused by modelling and tracking that may
lead to unsafe situations during experiments. The flocking
algorithm by Olfati-Saber [13] is adopted and customized
to handle inter-agent and agent-obstacle collision avoidance.
The original algorithm contains three components for agent
alignment, obstacle avoidance, and target seeking. However,
since alignment is unnecessary and target seeking is handled
by the encirclement control, only the collision avoidance term
uV

8
is used.

uV

8
=

∑
:∈# V

8

2
V

1 qV

(q̂8,: −q8f)
n̂8,: + 2V2 18,:

(
p̂8,: −p8

)
(30)

q8 =
[
G8 H8

]) p8 =
[
¤G8 ¤H8

]) (31)

The input uV

8
is the desired acceleration for agent 8, and

all other agents are treated as obstacles. Hence, #V

8
is

agent 8’s set of neighbouring obstacles and agents. The
collision avoidance method creates a virtual agent with state
(q̂8,: , p̂8,:) at the boundary of each obstacle, and then uses
repulsive potential function qV for collision avoidance with
the virtual agent. The norm ‖·‖f is a customized norm used
for smoothing the potential function. The 2V2 term considers
the relative velocity between the agent and obstacles, where
18,: is a heterogeneous adjacency term between agent 8 and
obstacle : .

This collision avoidance approach was chosen over tradi-
tional potential field methods based on two key advantages.
The velocity term allows for faster reaction with moving
obstacles, as well as velocity damping if an agent approaches
an obstacle too quickly. The second advantage is that the
virtual agent creation allows for collision avoidance with

5092

Authorized licensed use limited to: The University of Toronto. Downloaded on May 26,2023 at 22:32:38 UTC from IEEE Xplore. Restrictions apply.

environment boundaries, as the virtual agent generated moves
in a straight line along the environment walls.

D. Integration
There are 3 components to the cooperative hunting algo-

rithm: encirclement LQR control, multi-agent path planner,
and collision avoidance. Only one component should be
active at a time for each agent, as the objectives of each
component conflict. LQR does not consider any collision
avoidance and the planner does not enforce the surrounding
objective. Since collision avoidance is top priority, if the
force based term uV

8
from Equation (30) is active then the

other two components should be inactive.
A model predictive control approach decides whether an

agent performs encirclement or planning based on predicted
future obstacle interaction. The agent predicts the future
states for a time window CF (same time as the planner) using
the agent state space dynamics and the assumed constant
velocity model for the target and obstacles. Agent 8 does not
encounter obstacles if it can follow the encirclement strategy
for duration CF with zero uV

8
in Equation (30). In such cases

the agent follows encirclement. Otherwise, the agent follows
the trajectory obtained by the planner.

To track this trajectory, a cubic spline interpolation is used
to connect the waypoints. Differentiating the spline twice
generates reference positions, velocities, and accelerations
which is tracked using LQR feedback control with the UAV
state space dynamics. Together, the full cooperative hunting
algorithm is outlined in Algorithm 3.

Algorithm 3 Cooperative Hunting
Input: Cost �, agent, target, and obstacle states
Output: Set of control inputs {u1, u2, ... u# }

1: Predict future states for time horizon CF
2: for agent i from 1 to N do
3: if collision avoidance active then
4: u8← Equation (30)
5: else if predicted obstacle interaction then
6: Add agent 8 to priority queue Q
7: else
8: u8← Equations (19)
9: end if

10: end for
11: Add predicted states of all agents not in Q to �
12: Run multiagent planning on agents in Q
13: P ← Algorithm 2
14: for agent i in Q do
15: Track path ?8 using feedback control and obtain u8

16: end for
17: return {u1, u2, ... u# }

IV. SIMULATION RESULTS
The proposed method is compared with optimal reciprocal

collision avoidance (ORCA) [14]. ORCA is a well cited
algorithm used for coordinating multiple agents to arrive
at their desired locations with collision free trajectories.

ORCA uses the concept of velocity obstacles, where the agent
determines a set of velocities which will cause a collision
with an obstacle if maintained through a time horizon. These
sets of velocities are used as constraints for planning, and
an optimization problem is formulated to generate desired
velocities for each agent.

ORCA was selected due to its open source availability
and ability to plan for multiple obstacles for which other
methods lacked. To adapt ORCA for the cooperative hunting
problem, the desired velocities are enforced using a feedback
controller based on the UAV dynamics similar to the path
following controller. The agents’ desired goal locations are
equally spaced points around the target.

Simulations were conducted using Python 3 in a 15 m by
15 m environment with 5 circular agents of radius 0.2 m in
two different scenarios. The first scenario is a static obstacle
rich environment and the second scenario is a moving ob-
stacle environment. The target location is static and random.
Circular obstacles are randomly generated in the environment
with a radius between 0.3 m to 1 m, with varying obstacle
numbers {10, 20, 30, 40, 50}. 100 episodes were conducted
for each obstacle number using the proposed approach and
ORCA. An example of the simulation environment with 40
static obstacles is shown in Figure 3.

Fig. 3. Example simulation environment with 5 agents and 40 static
obstacles. Agents shown in blue and target shown in yellow.

A. Obstacle Rich Environments

The number of successful captures within a time limit of
30 s was recorded, and Table I shows the success percentages.
As the number of obstacles increases, the local minima
problem becomes more prevalent, and the success rate drops
to 37% for cooperative hunting using ORCA. With the
proposed approach, most local minima are avoided and the
success rate stays above 90%. Since the proposed approach
predicts over a finite time window, the algorithm gets stuck
in obstacle configurations containing deep local minima.
This can be resolved by increasing the time window at the
cost of additional computation. The time discretization size
for prediction can also be increased, this allows for longer
time windows at the cost of model resolution. From the
simulations, a time window of 3 s with discretization size
0.2 s balances both accuracy and window length.

5093

Authorized licensed use limited to: The University of Toronto. Downloaded on May 26,2023 at 22:32:38 UTC from IEEE Xplore. Restrictions apply.

TABLE I
Success percentage in static obstacle environments

of obstacles 10 20 30 40 50
MPC 100 100 98 95 94
ORCA 96 74 65 44 37

B. Moving Obstacle Environments
The obstacles have a random speed of up to 0.5 m/s, and

the time limit was extended to 60 s. To measure performance,
the capture time and distance traveled by all agents is
recorded. The average capture time and path distance over
all episodes is shown in Table II. The planner minimizes
interaction with obstacles and thus the target is captured
faster and with shorter paths compared to ORCA, where
the agents constantly react to obstacles rather than following
desirable trajectories. This improvement increases as more
obstacles are introduced, from an average 0.7 s and 0.3 m
improvement with 10 obstacles to a 5 s improvement and
3.1 m with 50 obstacles. Furthermore, the MPC approach
has more consistent results compared to ORCA as indicated
by the lower standard deviations. For example, ORCA spent
up to 50 s in the most difficult environments, whereas the
capture time using MPC always remained under 30 s.

TABLE II
Capture time and path distance in moving obstacle environments

of obstacles 10 20 30 40 50
MPC time (s) 11.7±4.0 13.3±5.1 14.2±4.7 16.1±5.2 17.8±5.4
ORCA time (s) 12.4±6.8 14.5±6.2 15.8±7.9 19.4±11.0 22.8±12.2
MPC dist. (m) 16.3±5.1 17.5±5.4 18.8±5.8 21.7±6.1 22.6±6.9
ORCA dist. (m) 16.6±4.7 18.3±5.9 20.6±8.6 24.5±10.1 25.7±10.6

V. EXPERIMENTAL RESULTS
Two experiments were conducted in a 4 m by 2 m indoor

lab environment. The agents are Crazyflie UAVs and the
target is an iRobot create ground robot. A set of Op-
titrack motion capture cameras provide state information
streamed through VPRN. Communication was handled by
ROS Melodic through the crazyflie_ros package [21] and
create_autonomy package for the iRobot. All experimental
components are shown in Figure 4. PID controllers kept the
UAVs at constant height and zero yaw to match the 2D setup.
The desired target distance A3 was 0.5 m.

Due to downwash effects, the UAVs experience drift and
tracking error. The desired radial distance errors were within
0.1 m and the desired angle errors were within 15°. The
trajectory plots can be seen in Figure 5.

A. Moving Target
The first experiment verifies the proposed method for

tracking the target. Five UAVs surround the ground robot
in an empty environment, and the ground robot moves in
a circle. The UAVs surround the target at C = 10s and
successfully follow its motion afterwards.

B. Static Obstacles
The second experiment verifies the multi-agent planning

component of the algorithm. The environment consists of 4

Fig. 4. Experimental Setup: Optitrack cameras in lab environment (top),
Crazyflie UAVs (left), iRobot Create (right)

Fig. 5. Trajectory plots for the moving target experiment (top) and the
static obstacle experiment (below).

static obstacles and a static target. All UAVs successfully pass
the obstacles after C = 10s and surround the target at C = 15s.
cf0 and cf4 only followed the encirclement strategy, as the
prediction step determined no interactions with obstacles.

VI. CONCLUSION

A model predictive control algorithm was presented for co-
operative hunting in obstacle rich environments and moving
obstacle environments with consideration for UAV dynamics.
The problem is formulated in the context of both control and
planning. The proposed approach uses feedback linearized
LQR control in polar coordinates for encirclement, dynamic
programming based multi-agent planning for obstacle nav-
igation, and flocking based collision avoidance. Integration
of all three components is done by selecting the appropri-
ate component to use based on predicted future obstacle
interaction. The MPC algorithm was tested in simulation
and verified in experiment using Crazyflie UAVs. Results
show improved performance over optimal reciprocal collision
avoidance (ORCA), where the agents more successfully avoid
local minima and capture the target faster with shorter
trajectories in the presence of moving obstacles.

5094

Authorized licensed use limited to: The University of Toronto. Downloaded on May 26,2023 at 22:32:38 UTC from IEEE Xplore. Restrictions apply.

References
[1] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral

model,” in Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’87. New York,
NY, USA: ACM, 1987, pp. 25–34.

[2] A. Weitzenfeld, A. Vallesa, and H. Flores, “A biologically-inspired
wolf pack multiple robot hunting model,” in 2006 IEEE 3rd Latin
American Robotics Symposium, Oct 2006, pp. 120–127.

[3] C. Muro, R. Escobedo, L. Spector, and R. Coppinger, “Wolf-pack
(canis lupus) hunting strategies emerge from simple rules in compu-
tational simulations,” Behavioural Processes, vol. 88, no. 3, pp. 192
– 197, Nov 2011.

[4] J. D. Madden, R. C. Arkin, and D. R. MacNulty, “Multi-robot system
based on model of wolf hunting behavior to emulate wolf and elk
interactions,” in 2010 IEEE International Conference on Robotics and
Biomimetics, Dec 2010, pp. 1043–1050.

[5] A. T. Hafez, A. J. Marasco, S. N. Givigi, M. Iskandarani, S. Yousefi,
and C. A. Rabbath, “Solving multi-uav dynamic encirclement via
model predictive control,” IEEE Transactions on Control Systems
Technology, vol. 23, no. 6, pp. 2251–2265, Nov 2015.

[6] H. Shen, N. Li, S. Rojas, and L. Zhang, “Multi-robot cooperative hunt-
ing,” in 2016 International Conference on Collaboration Technologies
and Systems (CTS), Oct 2016, pp. 349–353.

[7] A. Franchi, P. Stegagno, and G. Oriolo, “Decentralized multi-robot
encirclement of a 3d target with guaranteed collision avoidance,”
Autonomous Robots, vol. 40, no. 2, pp. 245–265, Feb 2016.

[8] J. Cao, M. Li, Z. Wang, J. Li, and H. Wang, “Multi-robot target
hunting based on dynamic adjustment auction algorithm,” in 2016
IEEE International Conference on Mechatronics and Automation, Aug
2016, pp. 211–216.

[9] J. Ma, W. Yao, W. Dai, H. Lu, J. Xiao, and Z. Zheng, “Cooperative
encirclement control for a group of targets by decentralized robots
with collision avoidance,” in 2018 37th Chinese Control Conference
(CCC), July 2018, pp. 6848–6853.

[10] Z. Wu, Z. Cao, Y. Yu, L. Pang, C. Zhou, and E. Chen, “A multi-
robot cooperative hunting approach based on dynamic prediction of
target motion,” in 2017 IEEE International Conference on Robotics
and Biomimetics (ROBIO), Dec 2017, pp. 587–592.

[11] W. Yao, Z. Zeng, X. Wang, H. Lu, and Z. Zheng, “Distributed
encirclement control with arbitrary spacing for multiple anonymous
mobile robots,” in 2017 36th Chinese Control Conference (CCC), July
2017, pp. 8800–8805.

[12] C. W. Warren, “Multiple robot path coordination using artificial
potential fields,” in Proceedings., IEEE International Conference on
Robotics and Automation, May 1990, pp. 500–505 vol.1.

[13] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algo-
rithms and theory,” Automatic Control, IEEE Transactions on, vol. 51,
pp. 401 – 420, 04 2006.

[14] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-
body collision avoidance,” in Robotics Research, C. Pradalier, R. Sieg-
wart, and G. Hirzinger, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 3–19.

[15] D. Silver, “Cooperative pathfinding.” in Proceedings of the 1st Arti-
ficial Intelligence and Interactive Digital Entertainment Conference,
AIIDE 2005, 01 2005, pp. 117–122.

[16] K.-H. C. Wang and A. Botea, “Mapp: A scalable multi-agent path
planning algorithm with tractability and completeness guarantees,” J.
Artif. Int. Res., vol. 42, no. 1, pp. 55–90, Sep 2011.

[17] Y. Chen, M. Cutler, and J. P. How, “Decoupled multiagent path
planning via incremental sequential convex programming,” in 2015
IEEE International Conference on Robotics and Automation (ICRA),
May 2015, pp. 5954–5961.

[18] W. Hönig, J. A. Preiss, T. K. S. Kumar, G. S. Sukhatme, and N. Aya-
nian, “Trajectory planning for quadrotor swarms,” IEEE Transactions
on Robotics, vol. 34, no. 4, pp. 856–869, Aug 2018.

[19] “Crazyflie 2.1 | Bitcraze,” https://www.bitcraze.io/crazyflie-2-1/, ac-
cessed: 2020-02-22.

[20] D. P. Bertsekas, Dynamic Programming and Optimal Control, 2nd ed.
Athena Scientific, 2000.

[21] W. Hönig and N. Ayanian, Flying Multiple UAVs Using ROS. Springer
International Publishing, 2017, pp. 83–118.

5095

Authorized licensed use limited to: The University of Toronto. Downloaded on May 26,2023 at 22:32:38 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T13:26:12-0400
	Preflight Ticket Signature

