
Automatica 149 (2023) 110811

H
U

s
t
S
i
H
a
m
o
a
s
f
f
2
s
T

(

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Justification of the geometric solution of a target defense gamewith
faster defenders and a convex target area using the HJI equation✩

an Fu ∗, Hugh H.-T. Liu
niversity of Toronto, 4925 Dufferin Street, North York, M3H 5T6, Ontario, Canada

a r t i c l e i n f o

Article history:
Received 26 September 2021
Received in revised form22 September 2022
Accepted 18 November 2022
Available online 3 January 2023

Keywords:
Target defense
Differential game
HJI equation
Viscosity solution

a b s t r a c t

A multi-defender single-invader target defense game is a differential game where the invader intends
to enter a target area protected by a group of defenders, while the defenders intend to capture the
invader before it enters. This game has been extensively studied and a geometric solution exists.
However, this solution has only been justified under special cases. The main contribution of this
paper is to prove that the geometric solution satisfies the HJI equation under the general condition.
Specifically, the target area is not required to take a peculiar shape, such as circles, lines, etc. In
addition, the defenders are allowed to move freely in the two-dimensional plane, the capture range of
the defenders is non-zero, and the number of defenders is not restricted. This generalized formulation
imposes an important challenge on an essential step of the proof, computing the derivatives of the
value function. This challenge is resolved in this paper therefore the proof can be accomplished. The
significance of studying the geometric solution is that it provides a state feedback control law using
an adequate amount of computation. The target defense game is inherently challenging to be solved
with numerical methods, because it is highly nonlinear and suffers from the curse of dimensionality.
The proof presented in this paper provides a solid theoretic foundation for the geometric solution, so
the difficulties raised by the numerical methods can be circumvented.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

The target defense differential game is a mathematical ab-
traction of the counter-UAV scenario where a specific area needs
o be protected against hostile drones (Michel & Holland, 2018;
athyamoorthy, 2015). The differential game theory was initial-
zed by Isaacs in his seminal book (Isaacs, 1999), where the
amilton–Jacobi–Bellman–Isaacs (HJI) equation was constructed
nd a solution was proposed using dynamic programming. Such
ethod was used to obtain analytical solutions for a number
f games (Hagedorn & Breakwell, 1976; Merz, 1971, 1972). As
partial differential equation (PDE), the HJI equation can be

olved numerically. For example, it can be converted into a
ixed-point problem (Falcone, 2006), or can be treated as the
unction of a time-varying curve (Fisac, Chen, Tomlin, & Sastry,
015; Margellos & Lygeros, 2011) and solved with the level-
et method (Mitchell, 2007; Mitchell, Bayen, & Tomlin, 2005).
he game can also be split as coupled optimization problems

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Andrey
V. Savkin under the direction of Editor Ian R. Petersen.
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and solved as a nonlinear programming (Carr, Cobb, Pachter, &
Pierce, 2018). However, numerical solutions suffer from curse
of dimensionality, the fact that the computation cost increases
exponentially with the problem dimension. Adaptive dynamic
programming (ADP) (Rubies-Royo & Tomlin, 2016; Vamvoudakis
& Lewis, 2011) and reinforcement learning (RL) (Dixon, 2014;
Lowe et al., 2017) are powerful in addressing these problems,
but the target defense game is still tricky because its objective
function does not contain an integral term.

Due to the reasons above, analytical solutions remain a pop-
ular option in the study of differential games. To facilitate the
analytical solution, the formulation of the game is important. For
example, players are usually modeled as single integrators (Fuchs,
Khargonekar, & Evers, 2010; Scott & Leonard, 2014) or unicy-
cles (Scott & Leonard, 2018). Choosing proper state variables (Wei
& Yang, 2018) and decomposing complex games into sub-
problems (Shishika & Kumar, 2018; Zha, Chen, Peng, & Gu, 2016)
are commonly used techniques. Meanwhile, intuitions and ge-
ometric methods also play an important role, among which an
extensively studied concept is the dominance region (Isaacs,
1999), the area that one player can reach before all the other
players. When the defender’s capture range is zero, the invader’s
dominance region in a single defender game is an Apollonius
circle (Dorothy, Maity, Shishika, & Von Moll, 2021; Ramana &
Kothari, 2017; Wang, Yue, & Liu, 2015; Yan, Shi, & Zhong, 2021).
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hen the capture range is non-zero, the dominance region be-
omes a Cartesian oval (Garcia & Bopardikar, 2021). A limitation
f the intuitive solution is the lack of strict justification. An
xample is the game of capturing two evaders. A natural intuition
s the pursuer capturing the evaders subsequently. Unfortunately,
he game has a stage where the pursuer has equal distances from
oth evaders (Breakwell & Hagedorn, 1979), and the game only
egrades into a single-evader game when the pursuer breaks the
ie by selecting one evader. Another example is the multi-pursuer
ingle-evader game, where the intuitive control law (Von Moll,
asbeer, Garcia, Milutinović, & Pachter, 2019) was found to be
ptimal in only part of the state space (Pachter, Moll, Garcia,
asbeer, & Milutinović, 2020).
Differential games have rich variations. Aside from the most

opularly studied pursuit-evasion game, Ref. Garcia, Casbeer,
ran, and Pachter (2021) solved a multiplayer game where the
layers are able to attack opponents within a given range, Ref.
zőts and Harmati (2019) proposed a method for slower pursuers
o capture a faster evader. Weintraub, Von Moll, Garcia, Casbeer,
nd Pachter (2022) designed a strategy to track a moving target
ith a slower observer agent. A recent study (Szőts, Savkin, &
armati, 2021) presented an alternative solution for the problem
tudied in Hagedorn and Breakwell (1976) to handle singularities.
perimeter defense game where the defenders moved along the
oundary of the target area was solved in Shishika and Kumar
2019, 2020), Von Moll, Pachter, Shishika, and Fuchs (2020), and
ts variations with multiple players (Shishika, Paulos, & Kumar,
020) and in three-dimensional spaces (Lee, Shishika, & Kumar,
020) were also investigated. A similar perimeter defense game
as studied where the invaders intended to leave the target area

rom inside (Marzoughi & Savkin, 2021). In Yan, Shi, and Zhong
2018, 2019), an analytical solution was proposed for guarding a
inear target area within a rectangular region. The solution made
xtensive use of the dominance region.
This paper studies a target defense game where the defend-

rs move freely in an unbounded two-dimensional plane. Al-
hough this game has a geometric solution (Isaacs, 1999) and
as been extensively studied (Fu & Liu, 2020; Garcia, Casbeer, &
achter, 2020), it has only been proved for special cases to the
uthors’ best knowledge. For example, when the target area is
inear (Garcia, Von Moll, Casbeer, & Pachter, 2019), circular and
olygonal (Pachter, Garcia, & Casbeer, 2017). The work in Lee and
akolas (2021) provided a justification for convex target areas,
ut the game involved only one defender. In addition, proofs
n Garcia et al. (2019), Lee and Bakolas (2021) and Pachter et al.
2017) all assumed zero capture range.

The contribution of this paper is a justification of the geomet-
ic using the HJI equation. We resolve three challenges. Firstly,
alidating the geometric solution requires to compute the partial
erivatives of the function representing the target area, which
s arbitrarily convex thus has no specific expression. Lee and
akolas (2021) handled this problem by constructing a function
hat described the distance from a point to the target area. Such
onstruction is not required in this paper. Secondly, the non-
ero capture range makes the boundary of the dominance region
fourth order curve, causing the analytical representation of a
ritical intermediate variable become extremely complex. Such
epresentation was essential in Garcia et al. (2019), Lee and
akolas (2021) and Pachter et al. (2017) but is not required in
his paper. Thirdly, the value function suggested by the geometric
olution is not differentiable when multiple defenders are in-
olved. Through a detailed classification of possible situations of
he game, we prove the value function to be continuous thus it
olves the HJI equation in the viscosity sense (Crandall & Lions,
983).
The rest of the paper is organized as follows. Section 2 for-

ulates the multi-defender single-invader (MDSI) target defense
2

Fig. 1. Definition of the MDSI game.

ame and introduces the geometric solution. Section 3 proves the
eometric solution for the single-defender single-invader (SDSI)
ame. Section 4 proves the geometric solution for the MDSI game
nd presents several simulations. Section 5 concludes the study
f this paper and discusses potential future works. An Appendix
s attached which includes detailed derivations of the proof.

. Problem description

.1. Formulation of the MDSI game

Consider a target area A, a group of defenders Dj; j = 1; : : : ; n
nd a single invader I , as shown in Fig. 1. Assume

A1 the target area A is convex, and can be represented as

A =
�
[x; y]T |�(x; y) ≤ 0

	
; (2.1)

where �(x; y) : R2
→ R is second order differentiable.

A2 The players’ sizes and turning radii are much smaller than
their traveling distances, thus the dynamics of the system
can be described as

ẋj = vxj ; ẏj = vyj ;
q
v2xj + v2yj = vD; j = 1; : : : ; n

ẋI = vxI ; ẏI = vyI ;

q
v2xI + v2yI = vI :

(2.2)

where [xj; yj]T = pj, [xI ; yI ]T = pI are positions of the jth defender
and the invader, [vxj ; vyj ]

T
= vj, [vxI ; vyI ]

T
= vI are player

velocities and control inputs, vD, vI are velocity magnitudes.

A3 The defenders travel faster, i.e., vD ≥ vI , or a > 1, where

a = vD=vI : (2.3)

In the game, the invader intends to enter the target area
without being captured, while the defenders seek to capture the
invader outside of the target. Capture happens when the invader
is within the capture range r of at least one defender, i.e., ∃j ∈

{1; : : : ; n} s.t. ∥pI − pj∥ ≤ r . Assume

A4 the capture range is positive, i.e., r > 0.

Remark 2.1. As will be revealed later, the proposed proof has no
requirement on r . Therefore the proof is also valid for r = 0.

Let [xcI ; y
c
I ]

T be the invader’s location upon capture, the game
is defined by Eq. (2.4), where V is the value function.

V (x1; y1; : : : ; xn; yn; xI ; yI ) = min max �(xcI ; y
c
I ): (2.4)
vI v1;:::;vn
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Fig. 2. Dominance region of the invader. Players are massless points therefore
Dj , I can also be viewed as positions of defender Dj and invader I .

2.2. Dominance region

The invader’s dominance region against a single defender is
the area within which any point can be reached by the invader
without capture, as shown in Fig. 2 and defined in (2.5).

Dj
I =

�
[x; y]T |dj(x; y; xj; yj; xI ; yI ) ≥ 0

	
; (2.5a)

dj(x; y; xj; yj; xI ; yI ) = Rj(x; y) − aRI (x; y) − r; (2.5b)

Rj(x; y) =

q
(x − xj)2 + (y − yj)2;

RI (x; y) =

p
(x − xI )2 + (y − yI )2:

(2.5c)

hen there are multiple defenders, the overall dominance region
f the invader is the intersection of all the individual dominance
egions. i.e., DI = ∩j=1;:::;nDj

I .

emma 2.1. For given player locations, dominance region DI =

j=1;:::;nDj
I is convex.

Lemma 2.1 is proved in Appendix C.
Since any point within the invader’s dominance region can be

eached by the invader without capture, if A∩DI ̸= ∅, the invader
ins regardlessly. To eliminate this trivial case, an additional
ssumption is imposed:

A5 A ∩ DI = ∅ at the beginning of the game.

.3. Geometric solution

Given player locations, define an auxiliary problem

aux(D1; : : : ;Dn) :

min
[x;y]T

�(x; y)

s:t: [x; y]T ∈ DI = ∩j=1;:::;nDj
I

; (2.6)

here D1; : : : ;Dn are the defenders involved in the game.

emma 2.2. Paux(D1; : : : ;Dn) is convex and has a unique solution
∗

= [x∗; y∗
]
T

∈ @DI . @DI is the boundary of DI .

roof. Lemma 2.2 is obvious due to the convexity of � and DI ,
nd assumption A5. �

Then the geometric strategy is given by

g
j (x1; y1; : : : ; xn; yn; xI ; yI ) =

vD

Rj(x∗; y∗)

�
x∗

− xj
y∗

− yj

�
; j = 1; : : : ; n;

g
I (x1; y1; : : : ; xn; yn; xI ; yI ) =

vI

RI (x∗; y∗)

�
x∗

− xI
y∗

− yI

�
;

(2.7)

nd the value function is suggested to be
g (x ; y ; : : : ; x ; y ; x ; y ) = g(x∗; y∗): (2.8)
1 1 n n I I s

3

2.4. Goal of the paper

The goal of this paper is to prove the following theorem

Theorem 2.1. For the target defense game with dynamics (2.2),
target area (2.1) and assumptions A1–A5, the geometric control law
(2.7) and value function (2.8) solve the HJI equation

min
vI

max
v1;:::;vn

8<:
nX

j=1

�
@V
@xj

ẋj +
@V
@yj

ẏj

�
+
@V
@xI

ẋI +
@V
@yI

ẏI

9=; = 0 (2.9a)

nder boundary conditions

V (x1; y1; : : : ; xn; yn; xI ; yI ) = 0 (2.9b)

�(xI ; yI ) = 0 (2.9c)

min
=1;:::;n

{(xj − xI )2 + (yj − yI )2} = r: (2.9d)

The boundary condition is built from the following facts. When
he initial location of the invader is at the boundary of the target
Eq. (2.9c)) and there is at least one defender within the capture
ange (Eq (2.9d)), the invader will be captured immediately (Eq.
2.9b)).

Clearly, the geometric solution satisfies the boundary condi-
ion, because DI reduces to p∗, thereby V g

= g(x∗

I ; y
∗

I ) = 0. So
he core task of this paper is to prove V g satisfies (2.9a).

. Proof for the SDSI game

.1. Notations

Since SDSI game is a special case of the MDSI game, this sec-
ion adopts a simplified notation as listed in Table 1. In addition,
e will need another function, the slope of @DI , denoted by
(x; y; xD; yD; xI ; yI ). By definition, the function of @DI is

(x; y; xD; yD; xI ; yI ) = 0: (3.1)

or fixed xD, yD, xI , yI , (3.1) is an implicit function of y(x). Taking
he derivative of (3.1) over x gives

x(x; y; xD; yD; xI ; yI ) + dy(x; y; xD; yD; xI ; yI )
dy
dx

= 0; (3.2)

where dx = @d=@x, dy = @d=@y. Then,

k(x; y; xD; yD; xI ; yI ) :=
dy
dx

= −
dx(x; y; xD; yD; xI ; yI )
dy(x; y; xD; yD; xI ; yI )

: (3.3)

In the proof, we will be handling partial derivatives of �, d, k,
x∗, y∗, V , V g . For simplicity, we put the variable w.r.t. which the
partial derivative is taken as the subscript. For example, @�=@x is
denoted for short as �x. In addition, define

cos�(x; y) =
x − xD
RD(x; y)

; sin�(x; y) =
y − yD
RD(x; y)

; (3.4a)

cos�(x; y) =
x − xI
RI (x; y)

; sin�(x; y) =
y − yI
RI (x; y)

; (3.4b)

�D =
a cos(� − �) − 1

(dy)2RD
; �I =

cos(� − �) − a
(dy)2RI

; (3.5)

e� = [cos�; sin�]
T ; ẽ� = [sin�; cos�]

T ;

e� = [cos�; sin�]
T ; ẽ� = [sin�; cos�]

T :
(3.6)

Among the notations above, �, d, k, RD, RI , �, � , �D, �I , e� , e� , ẽ� ,
˜� are functions whose arguments contain x, y. These functions
ill be evaluated at x = x∗, y = y∗. This is emphasized through
ubscript/superscript ∗, as shown in Table 2.
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Table 1
Correlations of the notations for the MDSI and the SDSI game.
For Dj in MDSI Game For D in SDSI Game

pj = [xj; yj]T , Paux(Dj) pD = [xD; yD]
T , Paux(D)

Dj
I , @Dj

I , Rj(x; y) DI , @DI , RD(x; y)
dj(x; y; xj; yj; xI ; yI ) d(x; y; xD; yD; xI ; yI )
v
g
j (x1; y1; : : : ; xn; yn; xI ; yI ) v

g
D(xD; yD; xI ; yI )

V g (x1; y1; : : : ; xn; yn; xI ; yI ) V g (xD; yD; xI ; yI )

Table 2
Notations for functions at [x∗; y∗

]
T .

Functions Functions at x = x∗ , y = y∗

�x , �y , �xx , �xy , �yx , gyy �x∗ , �y∗ , �xx∗ , �xy∗ , �yx∗ , �yy∗

dx , dy , dxD , dyD , dxI , dyI dx∗ , dy∗ , dx∗D , dy∗D , dx∗I , dy∗I
kx , ky , kxD , kyD , kxI , kyI kx∗ , ky∗ , kx∗D , ky∗D , kx∗I , ky∗I
d, k, � RD , RI , �D , �I d∗ , k∗ , �∗ , R∗

D , R
∗

I , �
∗

D , �
∗

I
�, � , e� , e� , ẽ� , ẽ� �∗ , �∗ , e�∗ , e�∗ , ẽ�∗ , ẽ�∗

Fig. 3. Proof for Lemma 3.1.

Fig. 4. Definitions of F�∗ and F�∗ .

emma 3.1. For the SDSI game with dynamics (2.2), target area
2.1), and assumptions A1–A5, we have
�x∗

�y∗
=

dx∗
dy∗

> 0: (3.7)

roof. According to convex optimization theory, @DI is tangent
o contour @A′

= {[x; y]T |�(x; y) = �∗} at p∗
= [x∗; y∗

]
T , as

shown in Fig. 3. Hence the gradient of d and � at p∗, namely
[�x∗ ; �y∗ ]

T and [dx∗ ; dy∗ ]T must be parallel. By definitions of �, d,
both d and � increase along the direction from p∗ pointing into
the dominance region. So [�x∗ ; �y∗ ]

T and [dx∗ ; dy∗ ]T are along the
same direction. This implies (3.7). �

In the end, define frame F�∗ s.t. its x-axis is along e�∗ . Sim-
ilarly, define F�∗ whose x-axis is along e�∗ , as shown in Fig. 4.

3.2. Overview of the proof

Let @pDV = [VxD ; VyD ]
T , @pIV = [VxI ; VyI ]

T , the HJI equation
(2.9a) can be re-organized as

minmax
�
(@pDV )TvD + (@pIV )TvI

	
= 0: (3.8)
vI vD

4

Lemma 3.2. For control laws vD, vI , and function V to solve HJI
equation (3.8), it must be satisfied that

vD = vD
@pDV

∥@pDV∥
; vI = −vI

@pIV
∥@pIV∥

; (3.9a)

a∥@pDV∥ = ∥@pIV∥: (3.9b)

To verify (3.9), we need to calculate @pDV
g , @pIV

g . Recall V g
=

g(x∗; y∗) and use the chain rule,

@pDV
g

=

�
V g
xD

V g
yD

�
=

"
x∗
xD�x∗ + y∗

xD�y∗

x∗
yD�x∗ + y∗

yD�y∗

#
; (3.10a)

@pIV
g

=

�
V g
xI

V g
yI

�
=

"
x∗
xI�x∗ + y∗

xI�y∗

x∗
yI�x∗ + y∗

yI�y∗

#
: (3.10b)

x∗
xD , x

∗
yD , y

∗
xD , y

∗
yD , x

∗
xI , x

∗
yI , y

∗
xI , y

∗
yI can be computed by converting

aux(D) into an implicit function of x∗(xD; yD; xI ; yI ), y∗(xD; yD; xI ;
yI ). An overview of the proof is presented below.

I Construct an implicit function of x∗(xD; yD; xI ; yI ), y∗(xD,
yD; xI ; yI ) using Paux(D).

II Compute x∗
xD , x

∗
yD , x

∗
xI , x

∗
yI , y

∗
xD , y

∗
yD , y

∗
xI , y

∗
yI by taking deriva-

tives of the implicit function constructed in step I.
III Use the chain rule (3.10) and the derivatives computed in

step II to compute @pDV
g and @pIV

g .
IV Verify @pDV

g , @pIV
g and the geometric control law (2.7)

using Lemma 3.2.

3.3. Details of the proof

3.3.1. Step I: Construct the implicit function of x∗ and y∗

Lemma 3.3. Under A5, a necessary condition for [x∗; y∗
]
T to solve

Paux(D) is to satisfy Eq. (3.11).

�x∗ + �y∗k(x∗; y∗; xD; yD; xI ; yI ) = 0; (3.11a)

d(x∗; y∗; xD; yD; xI ; yI ) = 0: (3.11b)

Proof. Under A5, [x∗; y∗
]
T

∈ @DI , which gives (3.11b). This also
converts the constraint of Paux(D) as d(x; y; xD; yD; xI ; yI ) = 0. For
given xD, yD, xI , yI , d(x; y; xD; yD; xI , yI ) = 0 can be viewed as an
implicit function of y(x). By substituting y(x) into �, Paux(D) be-
comes an unconstrained optimization problem regarding x only. A
necessary condition for x to be the solution of Paux(D) is d�=dx =

0, which expands as

d�(x; y(x))
dx

= �x(x; y(x)) + �y(x; y(x))k(x; y(x); xD; yD; xI ; yI ) = 0:

(3.12)

eplacing x; y(x) with x∗; y∗ in (3.12) gives (3.11a). �

.3.2. Step II, compute partial derivatives of x∗, y∗

Taking derivatives of (3.11) over xD gives

xx∗x∗

xD + �xy∗y∗

xD +
�
�yx∗x∗

xD + �yy∗y∗

xD

�
k∗+

�y∗

�
kx∗x∗

xD + ky∗y∗

xD + kx∗D

�
= 0;

dx∗x∗

xD + dy∗y∗

xD + dx∗D = 0:

(3.13)

his is a linear equation regarding x∗
xD , y

∗
xD , thus can be solved

irectly. The same process can be executed for yD, xI , yI . After
his, we can substitute the detailed expressions of d, k and their
erivatives into the result, and simplify the representation using
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�∗ , e�∗ , ẽ�∗ , ẽ�∗ and the auxiliary variables defined in (3.14).

K∗ = [1; k∗]
T ; ∇�∗ = [�x∗ ; �y∗ ]

T ;

�x∗ = [�xx∗ ; �yx∗ ]
T ; ∇�y∗ = [�xy∗ ; �yy∗ ]

T ;

R+ =

�
�∗

D 0
0 �∗

I

�
; R− =

�
�∗

D 0
0 −�∗

I

�
;

� = Determinant of (3.13):

(3.14)

he result is presented in Eq. (3.15). Exemplar derivations for
3.15a), (3.15b) can be found in Appendix B.1.

x∗

xD = −K T
∗
∇�y∗ cos�∗=�+

�
�∗

D − aẽT�∗R−ẽ�∗

�
�y∗=�; (3.15a)

y∗

xD = K T
∗
∇�x∗ cos�∗=�+

�
aẽT�∗R+e�∗

�
�y∗=�; (3.15b)

x∗

yD = −K T
∗
∇�y∗ sin�∗=�+

�
aeT�∗R+ẽ�∗

�
�y∗=�; (3.15c)

∗

yD = K T
∗
∇�x∗ sin�∗=�+

�
�∗

D − aeT�∗R−e�∗

�
�y∗=�; (3.15d)

x∗

xI = aK T
∗
∇�y∗ cos�∗=�−

�
a2�∗

I + aeT�∗R−e�∗

�
�y∗=�; (3.15e)

y∗

xI = −aK T
∗
∇�x∗ cos�∗=�−

�
aẽT�∗R+e�∗

�
�y∗=�; (3.15f)

x∗

yI = aK T
∗
∇�y∗ sin�∗=�−

�
aeT�∗R+ẽ�∗

�
�y∗=�; (3.15g)

y∗

yI = −aK T
∗
∇�x∗ sin�∗=�−

�
a2�∗

I + aẽT�∗R−ẽ�∗

�
�y∗=�:

(3.15h)

emark 3.1. Eq. (3.15) is not well-defined when� = 0, however,
will be canceled out in @pDV

g , @pIV
g .

.3.3. Step III: Compute @pDV
g , @pIV

g

Substituting Eqs. (3.15a)–(3.15d) into (3.10a), we have

pDV
g

= − K T
∗
∇�y∗�x∗

�
cos�∗

sin�∗

�
=�+ K T

∗
∇�x∗�y∗

�
cos�∗

sin�∗

�
=�+

�x∗�y∗

"
�∗

D − aẽT�∗R−ẽ�∗

aeT�∗R+ẽ�∗

#
=�

+ �2
y∗

"
aẽT�∗R+e�∗

�∗

D − aeT�∗R−e�∗

#
=�:

(3.16)

t can be seen that the first two terms are along e�∗ , so we attempt
o write the other two terms in frame F�∗ as well. Let

1
D =

�
�∗

D − aẽT�∗R−ẽ�∗

aeT�∗R+ẽ�∗

�
=�; 
2

D =

�
aẽT�∗R+e�∗

�∗

D − aeT�∗R−e�∗

�
=�;

(3.17)

hen the coordinates of 
1
D, 


2
D in F�∗ can be computed through

heir dot and cross products with e�∗ :

�

1
D

�
F�∗

=

�
e�∗ · 
1

D
e�∗ × 
1

D

�
;
�

2
D

�
F�∗

=

�
e�∗ · 
2

D
e�∗ × 
2

D

�
: (3.18)

ubstituting the definitions of e�∗ , 
1
D, 


2
D, the result yields

�

1
D

�
F ∗

= −

�
ky∗
∗

�
=�;

�

2
D

�
F ∗

=

�
kx∗
∗

�
=�: (3.19)
� �Ddy∗ � �Ddx∗

5

Detailed computations can be found in Appendix B.3. Then, Eq.
(3.16) becomes

@pDV
g

=K T
∗

�
−∇�y∗�x∗ + ∇�x∗�y∗

�
e�∗=�+ �x∗�y∗


1
D + �2

y∗

2
D

=�y∗K T
∗

�
−∇�y∗

�x∗

�y∗
+ ∇�x∗

�
e�∗=�+ �2

y∗

�
�x∗

�y∗

1
D + 
2

D

�
=�y∗K T

∗

�
∇�y∗k∗ + ∇�x∗

�
e�∗=�+ �2

y∗
�
−k∗


1
D + 
2

D

�
=�y∗

�
K T

∗
H�∗

K∗

�
e�∗=�− k∗�

2
y∗


1
D + �2

y∗

2
D;

where H�∗
= [∇�x∗ ;∇�y∗ ] is the Hessian of � at [x∗; y∗

]
T . Now,

express 
1
D, 


2
D, e�∗ in F�∗ , the coordinate of @pDV becomes�

@pDV
g�

F�∗
=

1
�

��
�y∗K T

∗
H�∗

K∗

0

�
+k∗�

2
y∗

�
ky∗
�∗

Ddy∗

�
+ �2

y∗

�
kx∗
�∗

Ddx∗

��
=
�y∗

�

�
K T

∗
H�∗

K∗ + �y∗ (k∗ky∗ + kx∗ )
�∗

D(k∗dy∗ + dx∗ )�y∗

�
:

ince dx∗=dy∗ = −k∗, the second component of [@pDV ]F�∗ is 0.
lso, it can be proved that
T
∗
H�∗

K∗ + �y∗ (k∗ky∗ + kx∗ ) = �=dy∗ : (3.20)

ee Eq. (B.5), Appendix B.2. As a result,�
@pDV

g�
F�∗

=

�
�y∗=dy∗

0

�
: (3.21a)

Following a similar process (a sketch can be found in
Appendix B.4), the coordinate of @pIV in F�∗ turns out to be�
@pIV

g�
F�∗

= −a
�
�y∗=dy∗

0

�
: (3.21b)

3.3.4. Step IV: Verify the geometric solution using Lemma 3.2
Compare (3.21a) (3.21b) with Eq. (3.9) and use the defini-

tion of F�∗ , F�∗ , it can be seen that Lemma 3.2 is satisfied if
�y∗=dy∗ > 0, which is guaranteed by Lemma 3.1. Further, since �,
d are second-order differentiable, � is convex, d is concave, and
[x∗; y∗

]
T is not an extremum of d, thus �y∗=dy∗ must be finite. This

means V g is differentiable, thereby is the classic solution of the
HJI equation.

Remark 3.2. (3.13) is only a necessary condition. In fact, it has
another solution which maximizes �. These two solutions are
distinguished by the sign of �y∗=dy∗ . If p∗ maximized �, then
�y∗=dy∗ < 0, the HJI equation would not be satisfied.

4. Proof for the MDSI game

This section starts with the 2DSI game, the proof for the MDSI
game is a direct extension.

4.1. Notations in the 2DSI game

Here we use the MDSI notations from Table 1. In addition, the
definition of � is extended into �j; j = 1; 2 by replacing all the
subscript D with j = 1; 2 in Eq. (3.4). The definitions of e� , ẽ� are
extended into ej, ẽj; j = 1; 2 accordingly. Here we discuss three
games, the SDSI game between the invader and each defender,
and the 2DSI game among all the three players. Let p∗

1, p∗

2 and p∗

be the solutions to their auxiliary problems. In addition, consider
the closer intersection of @D1

I , @D2
I , denoted by p? = [x?; y?]T .

Similar to how p∗ is handled in the SDSI game, we will compute
derivatives of x?, y? w.r.t. player locations, including x?xj , y

?
xj , x

?
yj ,

y?yj , j = 1; 2, and x?xI , x
?
yI , y

?
xI , y

?
yI . When a function is evaluated at

p?, a subscript ? is added, the same way as ∗ is used in Table 2.
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Fig. 5. Relationship of D1
I , D2

I : one belongs to the other. As an example,
1
I ⊆ D2

I .

Fig. 6. Relationship of D1
I , D2

I : neither belongs to the other. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

4.2. Degeneration of the 2DSI game

The 2DSI game degenerates into an SDSI game in most situ-
ations. This can be identified through enumeration. First of all,
the two dominance regions D1

I , D2
I must intersect because they

have at least one common point, the invader. As a result, the
relationship between D1

I and D2
I has two possibilities, one belongs

to the other, or neither belongs to the other. If the former is true
(see Fig. 5), the game is degenerated, because the intersection
of the two dominance regions is equal to the smaller one. If
neither of D1

I , D2
I belongs to the other, whether the game is

degenerated is determined by the target area. As shown in Fig. 6,
when the target area is at the blue (dot) position, the solution
of Paux(D1;D2) is distinct from both p∗

1, p∗

2. Instead, it is at p?.
f the two defenders both move toward p?, the invader can be
aptured at a further distance from the target than in any of the
DSI games, thus the 2DSI game is not degenerated. In fact, this
s the only non-degenerated case. When the target area is at the
reen (diamond) location, the game degenerates as an SDSI game
ith D2. In between the blue (dot) and green (diamond) locations

s the critical condition where p∗

2 = p? (red, star), which can be
iewed as both a 2DSI and an SDSI game.

.3. Proof for the non-degenerated 2DSI game

This proof follows the same procedure as the SDSI game.
irstly, let @p1V = [Vx1 ; Vy1 ]

T , @p2V = [Vx2 ; Vy2 ]
T , @pIV = [VxI ,

yI ]
T , and re-organize the HJI equation (2.9a) as

min
vI

max
v1;v2

�
(@p1V )Tv1 + (@p2V )Tv2 + (@pIV )TvI

	
= 0: (4.1)

emma 4.1. For control laws v1, v2, vI , and function V to solve HJI
quation (4.1), it must be satisfied that
6

v1 = vD
@p1V

∥@p1V∥
; v2 = vD

@p2V
∥@p2V∥

; vI = −vI
@pIV

∥@pIV∥
;

a∥@p1V∥ + a∥@p2V∥ = ∥@pIV∥:

(4.2)

The implicit function of x?, y? is given by(
d1(x?; y?; x1; y1; xI ; yI ) = 0

d2(x?; y?; x2; y2; xI ; yI ) = 0
: (4.3)

Differentiating (4.3) w.r.t. x1 gives

d1x?x
?
x1 + d1y?y

?
x1 + d1x?1 = 0;

d2x?x
?
x1 + d2y?y

?
x1 = 0;

(4.4)

from which it can be solved that

x?x1 = d1x?1d
2
y?=
; y?x?1 = −d1x1d

2
x?=
; (4.5)

where 
 = d1y?d
2
x? − d1x?d

2
y? is the determinant of (4.4). Repeating

this for y1, x2, y2, xI , yI gives

x?x1 = − cos�1?d2y?=
; y?x1 = cos�1?d2x?=
;

x?y1 = − sin�1?d2y?=
; y?y1 = sin�1?d2x?=
;

x?x2 = cos�2?d1y?=
; y?x2 = − cos�2?d1x?=
;

x?y2 = sin�2?d1y?=
; y?y2 = − sin�2?d1x?=
;

x?xI = a cos�?(d2y? − d1y? )=
; y?xI = −a cos�?(d2x? − d1x? )=
;

x?yI = a sin�?(d2y? − d1y? )=
; y?yI = −a sin�?(d2x? − d1x? )=
:

(4.6)

Then, @p1V
g can be computed using the chain rule:

@p1V
g

=

"
gx?x?x1 + gy?y?x1
gx?x?y1 + gy?y?y1

#

=

"
− cos�1?gx?d2y? + cos�1?gy?d2x?
− sin�1?gx?d2y? + sin�1?gy?d2x?

#
=


=
�
−gx?d2y? + gy?d2x?

� �cos�1?

sin�1?

�
=
:

@p2V
g , @pIV

g can be computed in the same way. Let ∇g? = [gx? ,
gy? ]T , ∇dj? = [djx? ; d

j
y? ]

T , j = 1; 2, 
 = ∇d1? × ∇d2? , we have

@p1V
g

= −
�
∇g? × ∇d2?

�
e1?=
;

@p2V
g

=
�
∇g? × ∇d1?

�
e2?=
;

@pIV
g

=a
�
∇g? × ∇d2? − ∇g? × ∇d1?

�
e�?=
:

(4.7)

To determine signs of the cross products in (4.7), assume D1
I is

on the right, see Fig. 7. Since p? ̸= p∗

j , � must decrease along
the tangent vector of @D1

I at p?, denoted by t1. Similarly, � also
decreases along −t2. Note ∇dj? is perpendicular to t j and points
into the dominance region, therefore ∇g? must be between ∇d1?
and ∇d2? . Then it can be asserted that ∇g?×∇d1? < 0, ∇g?×∇d2? >
0 and ∇d2?×∇d1? < 0. Using this in (4.7) gives @p1V > 0, @p2V > 0,
@pIV < 0. This makes Lemma 4.1 satisfied.

It can be further proved that @p1V
g , @p2V

g , @pIV
g are finite.

This is apparent when @D1
I , @D2

I intersect at p?, since ∇d1? , ∇d2?
are not parallel thus 
 ̸= 0. When @D1

I , @D2
I are tangent at

p?, ∇g?, ∇d1? , ∇d2? become colinear, so we need to investigate
the limit of (4.7). Because ∇g?, ∇d1? are finite and non-zero,
∥∇g? × ∇d1?∥ must approach zero with the same order as their
included angle, i.e., ∥∇g? × ∇d1?∥ ∼ ̸ (∇d1?;∇g?) > 0. Similarly,
∥∇g? × ∇d2?∥ ∼ ̸ (∇g?;∇d2?) > 0 and ∥∇d2? × ∇d1?∥ ∼

̸ (∇d1?;∇d2?) > 0. Since ∇g? is in between ∇d1? , ∇d2? , it holds
that ̸ (∇d1;∇d2) = ̸ (∇d1;∇g ) + ̸ (∇g ;∇d2). Note the two
? ? ? ? ? ?
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Fig. 7. Relative orientations of ∇g , ∇d1 and ∇d2 .

Fig. 8. Dominance region in MDSI game.

efenders are identical, we only label them as D1, D2 for the ease
of discussion. As ̸ (∇d1?;∇d2?) → 0, there is no reason one of
(∇d1?;∇g?), ̸ (∇g?;∇d2?) approaches zero at the same order of
(∇d1?;∇d2?) but the other does not. This means limits

lim
̸ (∇d1? ;∇d2? )→0

̸ (∇d1?;∇g?)
̸ (∇d1?;∇d2?)

; lim
̸ (∇d1? ;∇d2? )→0

̸ (∇g?;∇d2?)
̸ (∇d1?;∇d2?)

re both finite. Consequently, (4.7) is finite even when 
 → 0.

.4. Proof for the MDSI game

Since DI = ∩i=1;:::;nDj
I , @DI is piece-wise smooth, where each

egment belongs to one of @D1
I ; : : : ; @Dn

I (Fig. 8). Then p∗ can
take two kinds of locations, within a smooth segment @DI or at
a vertex. In the former case, the game degenerates into an SDSI
game. In the latter case, the game degenerates as a 2DSI game. So
the HJI equation is satisfied within each case.

Because the differentiability of V g is not assured when the
game switches cases, we prove V g to be continuous thus it
satisfies the HJI equation in the viscosity sense (Crandall & Lions,
1983). On the one hand, if the MDSI game degenerates as an SDSI
game with Dj, there must exist a small enough deviation in player
locations such that the relationship p∗

= p∗

j is maintained, so
the continuity of p∗ is inherited from p∗

j . On the other hand, if
the MDSI game degenerates as a 2DSI game with Dj1 , Dj2 , then
the new degenerated game after the deviation must remain as a
game with either or both of Dj1 , Dj2 . This is because other vertices
of @DI are at finite distances away, hence p∗ will not switch to
other vertices under small enough deviations. So the continuity
of p∗ follows from the 2DSI game. For the 2DSI game, we only
need to consider switches involving the non-degenerated game.
Note the switch happens when p∗

1, p∗

2, p? overlap, therefore the
continuity of the value function follows from the continuity of p∗

1,
p∗

2, p?, which has been asserted in the previous sections.

4.5. Simulations

This section shows some simulations of the geometric solu-
tion. The (non-dimensional) parameters used are v = 1:5, v =
D I

7

Fig. 9. Barrier of the MDSI game. vD = 1:5, vI = 1, r = 2.

Fig. 10. 4DSI game simulations. �(x; y) =

p
x2 + y2 − 5.

1, r = 2. Given defender locations, the location for the invader to
win the game is given by {[x; y]T |V (x1; y1; : : : ; xn; yn; x; y) < 0}.
The boundary of this region is called the barrier. The barrier for
different target areas are shown in Fig. 9.

Trajectories of an MDSI game with four defenders are shown
in Fig. 10. This game is always degenerated. When the game
degenerates as a 2DSI game, the invader is captured at a vertex
of @DI . when the game degenerates as an SDSI game, the invader
is captured at a smooth segment of @DI .

5. Conclusion and future work

This paper justifies an existing geometric solution of a multi-
player target defense game with non-zero capture ranges and an
arbitrary convex target area. The dominance region boundary of
this game is a fourth-order curve and the target area takes no
specific form, which makes the derivatives of the value function
V g tricky to compute. We resolve this challenge by constructing
an implicit function of the intermediate variable p∗, re-organizing
the HJI equation, and appropriate choice of reference frames. By
investigating how the MDSI game degenerates, we simplify the
problem as an SDSI or a 2DSI game.

To extend this work, the second-order differentiability re-
quirement on � can be relaxed. The authors’ supposition is that
continuity is sufficient. One may also consider multiple invaders,
but it is more challenging because a task assignment problem
is needed to decide the capture order (Fu & Liu, 2021), and the
number of players changes when an invader is captured.
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Appendix A. Partial derivatives of d, k

Since d, k are represented with RD, RI , �, � , we will start with
derivatives of RD, RI , �, � . This appendix adopts the SDSI notations
in Table 1, but the result can be used for MDSI games by replacing

T T
pD = [xD; yD] with pj = [xj; yj] .
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.1. Derivatives of RD, RI , �, �

According to the definition of RD in (2.5c) and � in (3.4),

RD)x =
@RD

@x
=
@

@x

p
(x − xD)2 + (y − yD)2 (A.1a)

=
2(x − xD)

2
p
(x − xD)2 + (y − yD)2

= cos�: (A.1b)

To compute (RD)y, we can replace (x − xD) with (y − yD) in the
numerator of (A.1b) and the result yields (RD)y = sin�. Further,
it can be seen that the only difference between (RD)x and (RD)xD is
x having coefficient +1 in (x− xD) while xD having −1. Therefore
(RD)xD = −(RD)x. Similarly, (RD)yD = −(RD)y. This concludes all the
first order partial derivatives of RD. Since RI is defined the same
way as RD, derivatives of RI can be inferred from that of RD with

replaced by � and xD, yD replaced with xI , yI . The results are
isted in Eq. (A.2).

RD)x = cos�; (RD)y = sin�
RD)xD = − cos�; (RD)yD = − sin�
RI )x = cos�; (RI )y = sin�
(RI )xI = − cos�; (RI )yI = − sin�

(A.2)

To compute partial derivatives of cos�, multiply both sides of
he first equation in (3.4a) by RD and obtain

RD cos� = x − xD: (A.3)

aking derivative of (A.3) over x, xD, y, yD respectively gives

(RD)x cos� + RD(cos�)x = 1 (A.4a)

(RD)xD cos� + RD(cos�)xD = −1: (A.4b)

(RD)y cos� + RD(cos�)y = 0 (A.4c)

RD)yD cos� + RD(cos�)yD = 0 (A.4d)

rom which we can solve

(cos�)x = sin2 �=RD; (cos�)y = − sin� cos�=RD;

cos�)xD = − sin2 �=RD; (cos�)yD = sin� cos�=RD:
(A.5a)

epeating this process for the other equation of (3.4a) gives

(sin�)x = − sin� cos�=RD; (sin�)y = cos2 �=RD;

sin�)xD = sin� cos�=RD; (sin�)yD = − cos2 �=RD:
(A.5b)

Because RI , � are defined the same way as RD, �, deriva-
ives regarding � can be inferred from (A.5a) (A.5b) by replacing
ubscript D with I , and replacing angle � with � . The result is

(cos�)x = sin2 �=RI ; (cos�)y = − sin� cos�=RI ;

cos�)xI = − sin2 �=RI ; (cos�)yI = sin� cos�=RI ;

(sin�)x = − sin� cos�=RI ; (sin�)y = cos2 �=RI ;

(sin�)xI = sin� cos�=RI ; (sin�)yI = − cos2 �=RI :

(A.5c)

.2. Derivatives of d

Recall d = RD −aRI − r . Based on the derivatives of RD, RI , first
rder derivatives of d can be computed directly:

dx = cos� − a cos�; dy = sin� − a sin�;

xD = − cos�; dyD = − sin�;
dxI = a cos�; dyI = a sin�:

(A.6)

econd order derivatives of d can be obtained by differentiating
A.6) and using (A.5). Here we only list those will be used to
8

ompute the derivatives of k:

dxx = sin2 �=RD − a sin2 �=RI ;

dxy = − sin� cos�=RD + a sin� cos�=RI ;

dyy = cos2 �=RD − a cos2 �=RI ;

dxxD = − sin2 �=RD; dxyD = sin� cos�=RD;

dxxI = a sin2 �=RI ; dxyI = −a sin� cos�=RI ;

yxD = sin� cos�=RD; dyyD = − cos2 �=RD;

dyxI = −a sin� cos�=RI ; dyyI = a cos2 �=RI :

(A.7)

.3. Derivatives of k

Recall k = −dx=dy, so kxD can be computed as

xD = −
dxxD
dy

+ dx
dyxD
d2y

=
dxdyxD − dydxxD

d2y
: (A.8)

kx, ky, kyD , kxI , kyI can be obtained by replacing subscript xD with x,
y, yD, xI , yI . Substituting second order derivatives of d from (A.7)
nd using (3.5), we have

kx = �D sin� + a�I sin�; ky = −�D cos� − a�I cos�;
kxD = −�D sin�; kyD = �D cos�;
kxI = −a�I sin�; kxI = a�I cos�:

(A.9)

Appendix B. Details in computing derivatives of x∗, y∗

B.1. Derivatives of x∗, y∗ w.r.t. xD

As stated in Section 3.3.2, taking derivatives of (3.11) over xD
gives (3.13). Re-organizing it using (3.14) gives

Gx∗x∗

xD + Gy∗y∗

xD + �y∗kx∗D = 0;

dx∗x∗

xD + dy∗y∗

xD + dx∗D = 0;
(B.1)

here Gx∗ , Gy∗ are derivatives of �, d, k grouped together:

x∗ = K T
∗
∇�x∗ + kx∗�y∗ ; Gy∗ = K T

∗
∇�y∗ + ky∗�y∗ :

Then, it can be solved from (B.1) that

x∗

xD =

�
dx∗DGy∗ − kx∗Ddy∗�

∗

y

�
=�; (B.2a)

y∗

xD = −

�
dx∗DGx∗ − kx∗Ddx∗�y∗

�
=�; (B.2b)

� = dy∗Gx∗ − dx∗Gy∗ : (B.2c)

In (B.2a), putting � on the left-hand-side, expand Gy∗ , and sub-
stituting the expressions of dx∗ , dy∗ , dx∗D , we have

x∗

xD� = − cos�∗

�
K T

∗
∇�y∗ −

�
�∗

D cos�∗ + a�∗

I cos�∗

�
�y∗
�

+ �∗

D sin�∗ .sin�∗ − a sin�∗/ �y∗

= − K T
∗
∇�y∗ cos�∗ + �∗

D�y∗

+ a�∗

I cos�∗ cos�∗�y∗ − a�∗

D sin�∗ sin�∗�y∗

= − K T
∗
∇�y∗ cos�∗ +

�
�∗

D − aẽT�∗R−ẽ�∗

�
�y∗ :

This gives (3.15a). Similarly,

−y∗

xD� = − cos�∗

�
K T

∗
∇�x∗ +

�
�∗

D sin�∗ + a�∗

I sin�∗

�
�y∗
�

+ �∗

D sin�∗(cos�∗ − a cos�∗)�y∗

= − K T
∗
∇�x∗ cos�∗ − a�∗

I sin�∗ cos�∗�y∗

− a�∗

D sin�∗ cos�∗�y∗

= − K T
∗
∇�x∗ cos�∗ −

�
aẽ�∗R+e�∗

�
�y∗ :

his gives (3.15b). Other derivatives in (3.15) can be obtained in
he same manner.
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E

�

b
f
d

d

A
t
s

(

.2. Simplify �

Recalling Eq. (3.7) states that �x∗=�y∗ = dx∗=dy∗ . In addition,
k∗ = −dx∗=dy∗ by (3.3). Then � can be simplified as

� = dy∗ (Gx∗ −
dx∗
dy∗

Gy∗ ) = dy∗ (Gx∗ + k∗Gy∗ )

xpanding Gx∗ , Gy∗ and K∗, ∇�x∗ , ∇�y∗ therein, we have

=dy∗
�
K T

∗
∇�x∗ + kx∗�y∗ + k∗

�
K T

∗
∇�y∗ + ky∗�y∗

��
=dy∗

�
�xx∗ + k∗�xy∗ + (kx∗ + k∗ky∗ )�y∗ + k∗(�yx∗ + k∗�yy∗ )

�
=dy∗

�
d�x∗

dx
+

dk∗

dx
�y∗ + k∗

d�y∗

dx

�����
@DI

=dy∗
d
�
�x∗ + k∗�y∗

�
dx

�����
@DI

= dy∗
d
dx

�
d�∗

dx

�����
@DI

= dy∗
d2�∗

dx2

����
@DI

(B.4)

Note in the computation above, subscript @DI means the deriva-
tive is taken along @DI , or equivalently, under constraint d(x; y,
xD; yD; xI ; yI ) = 0. Here xD, yD, xI , yI are treated as parameters.

Starting from the first line of (B.4), � can be manipulated in
another direction:
� =dy∗

�
K T

∗
∇�x∗ + kx∗�y∗ + k∗

�
K T

∗
∇�y∗ + ky∗�y∗

��
=dy∗

�
K T

∗
[∇�x∗ ;∇�x∗ ]

�
1
k∗

�
+ (kx∗ + k∗ky∗ )�y∗

�
=dy∗

�
K T

∗
H�∗

K∗ + (k∗ky∗ + kx∗ )�y∗
� (B.5)

This proves Eq. (3.20).

B.3. Inner and cross products of 
1
D with e�∗

Inner and cross products of 
1
D, 


2
D with e�∗ are straightforward

to compute by definition. For 
1
D, we have

e�∗ · 
1
D� =

�
�∗

D − aẽT�∗R−ẽ�∗

�
cos�∗ +

�
aeT�∗R+ẽ�∗

�
sin�∗:

Expand R−, R+, e�∗ , e�∗ , the equation above becomes

e�∗ · 
1
D�

=�∗

D cos�∗ − a(�∗

D sin�∗ sin�∗ − �∗

I cos�∗ cos�∗) cos�∗+

a(�∗

D cos�∗ sin�∗ + �∗

I sin�∗ cos�∗) sin�∗

=�∗

D cos�∗ + a�∗

I cos�∗ = −ky∗ :

(B.6)

Similarly,

e�∗ × 
1
D�

= −

�
�∗

D − aẽT�∗R−ẽ�∗

�
sin�∗ +

�
aeT�∗R+ẽ�∗

�
cos�∗

= − �∗

D sin�∗ + a(�∗

D sin�∗ sin�∗ − �∗

I cos�∗ cos�∗) sin�∗+

a(�∗

D cos�∗ sin�∗ + �∗

I sin�∗ cos�∗) cos�∗

= − �∗

D sin�∗ + a�∗

D sin�∗ = −�∗

Ddy∗ :

(B.7)

Using (B.6) (B.7) in (3.18) gives the first equation of (3.19).

B.4. Represent @pIV in F∗

�∗

Let


1
I =

�
a�∗

I + eT�∗R−e�∗

eT�∗R+ẽ�∗

�
=�; 
2

I =

�
ẽT�∗R+e�∗

a�∗

I + ẽT�∗R−ẽ�∗

�
=�;

@pIV can be represented as

@ V g
= −a� ∗K TH K e ∗=�− a�2 (−k 
1

+ 
2): (B.8)
pI y ∗ �∗ ∗ � y∗ ∗ I I

9

Fig. C.11. Dominance region of the invader under a frame where the x-axis is
along D⃗I .

Following a similar process as Appendix B.3, we can reach�

1
I

�
F∗

�∗

= −

�
ky∗

dy∗�∗

I

�
=�;

�

2
I

�
F∗

�∗

=

�
kx∗

dx∗�∗

I

�
=�: (B.9)

Appendix C. Proof of Lemma 2.1

Since the intersection of convex sets is still convex, we only
need to prove the lemma for the SDSI game. Here we use the
SDSI game notation from Table 1. Because the convexity of DI is
independent of the reference frame, we place the x-axis along
vector D⃗I , as shown in Fig. C.11. Since @DI is described by
d(x; y; xD; yD; xI ;
yI ) = 0, an implicit function of y(x), it is sufficient to prove y(x)
eing concave (d2y=dx2 < 0) for y > 0, and convex (d2y=dx2 > 0)
or y < 0. Recall the slope of @DI is given by k = −dx=dy, hence
2y=dx2 can be computed as

d2y
dx2

=
dk
dx

= kx + kky = kx −
dx
dy

ky =
dykx − dxky

dy
:

Putting dy on the left-hand-side, substituting dx, dy from (A.6) and
kx, ky from (A.9), the equation above becomes

y
d2y
dx2

=(sin� − a sin�)(�D sin� + a�I sin�)

+ (cos� − a cos�)(�D cos� + a�I cos�)

=�D − a2�I − a�D cos(� − �) + a�I cos(� − �)
= − �D .a cos(� − �) − 1/+ a�I (cos(� − �) − a)

= −
.a cos(� − �) − 1/2

(dy)2RD
+

a .cos(� − �) − a/2

(dy)2RI

ccording to the definition of RD, RI in (2.5c) and a in (2.3), and
he fact that a ≥ 1, it must hold that RI=RD < 1. Multiplying both
ides of the equation above by (dy)2RI , we have

dy)3RI
d2y
dx2

= − .a cos(� − �) − 1/2
RI

RD
+ a .cos(� − �) − a/2

> − .a cos(� − �) − 1/2 + .cos(� − �) − a/2

=
�
a2 − 1

� �
1 − cos2(� − �)

�
≥ 0

This means the sign of d2y=dx2 is the same as dy. According to
(A.6), dy = sin� − a sin� . In the chosen reference frame, yD =

yI = 0. Using this in the definition of �, � , it can be seen that
| sin�| < | sin�|. As a result, we have sin� − a sin� < 0 for
y > 0, and sin�− a sin� > 0 for y < 0. This implies d2y=dx2 < 0
when y > 0, and d2y=dx2 > 0 when y < 0.
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