
Multi-UAV Cooperative Hunting Using PSO in
3D Cluttered Environment

Shichen Fan1, Ge Song2, Chih-Chun Chen1, Peng Shi3, and Hugh H-.T. Liu1

1 University of Toronto Institute for Aerospace Studies, Canada,
shichen.fan@mail.utoronto.ca kccchen@gmail.com liu@utias.utoronto.ca

2 Harbin Engineering University, China,
gesong@hrbeu.edu.cn

3 School of Electrical and Electronic Engineering, The University of Adelaide,
Australia, and College of Engineering and Science, Victoria University, Australia

peng.shi@adelaide.edu.au

Abstract. Cooperative hunting has been an active research field in
unmanned aerial vehicles (UAVs) studies. In a three-dimensional (3D)
world, the underneath UAV could be influenced by the downwash im-
pact created from the UAV above when a trajectory crossing exists. This
paper introduced a solution to realize the cooperative hunting of multi-
UAV in a cluttered environment with obstacles. The comparison with
a flocking navigated solution with an adaptive height downwash model
considered in an obstacle-free environment and the distributed sliding
mode position controller solution in a cluttered environment where the
target is moving are presented and discussed at the end of the paper.
The proposed solution is observed to succeed in cooperative hunting of a
moving/static target in a cluttered/obstacle-free environment with faster
convergences and shorter trajectories than the other two solutions.

Keywords: cooperative hunting, collision avoidance, pso path planning

1 Introduction

Multi-agent cooperative hunting problem has been an active research field in
the past decades. Various solutions have been conducted to solve this problem
in different scenarios ([1], [2], [3], [4], [5]). Liao [3] and Furtado [5] found solu-
tions to this problem in two-dimensional (2D) dynamic world. Recently, Chen
([1], [2]) developed a flocking navigated solution to navigate multiple UAVs to
corresponding destinations when considering the downwash impact from the
UAV above on the underneath UAV when there is a trajectory crossing. This
author developed a collision avoidance solution of adaptive height by considering
the downwash impact as a cylindrical shape underneath each UAV. Her solution
includes a path planning algorithm, agent collision avoidance, and a controller
so that each UAV can follow the generated trajectory to its respective target.
However, no moving/static obstacles and no moving targets were considered in
her solution. Hence, this paper proposes extending a solution to realize the co-
operative hunting of multiple UAVs in a dynamic environment by considering



2 Shichen Fan et al.

encircling a moving target when there are moving/static obstacles. In the mean-
time, Song [4] developed a distributed sliding mode position controller to solve
the cooperative hunting of multi-UAV in a cluttered environment and hunting
a moving/static target in a 3-dimensional world. However, this author did not
address time-optimal hunting since she applied leader-follower strategy and was
based on predictions of the other agents. Optimal trajectory or shortest time to
hunt is essential hence it is necessary to develop a solution that can achieve these
goals. The developed solution will be compared with this sliding mode position
controller as well.

A solution solving cooperative hunting in a 3D environment where the down-
wash effect exists has yet to be developed. Therefore, this paper proposes a so-
lution to solve this problem by generating optimal trajectories for the hunter
agents to hunt and encircle a moving target while avoiding the downwash im-
pact and pathing around the moving or static obstacles in the environment. This
paper first discusses the two existing solutions which the proposed solution is
about to be compared with in this section and presents the proposed solution in
detail in the Methodology section. Then Section 3 includes an implementation of
the solution and comparisons with those two existing solutions mentioned above
in different scenarios and followed by a conclusion.

2 Methodology

This solution consists of four main components, including vertices assignment,
path planning algorithm, collision-avoidance algorithm, and a controller so that
hunter agents can follow the computed trajectories. This section introduces these
four components separately in detail.

2.1 Vertices Assignment

First, the Hungarian algorithm is added to assign vertices to the agents to min-
imize trajectory crossing. This algorithm is a combinatorial optimization algo-
rithm that can solve the assignment problem in a polynomial time. The idea of
platonic solids is adopted to determine the vertices for hunter agents so that the
agents evenly form a platonic solid around the target. In 4-agents case, a tetra-
hedron centred at the target position (xt, yt, zt) is selected. Figure 1 presents an
illustration of the relationship between selected vertices (labelled by circles in
orange) and the target position (labelled by the circle in green).



Multi-UAV Cooperative Hunting 3

Fig. 1: Vertices Selection in 3-dimensional

The Cartesian coordinates of the vertices in inertial space are:

V1 = (xt + l, yt + l, zt + l),

V2 = (xt + l, yt − l, zt − l),

V3 = (xt − l, yt + l, zt − l),

V4 = (xt − l, yt − l, zt + l).

(1)

Hungarian assignment is used here to determine hunter agents’ correspond-
ing target locations to minimize the trajectory crossing phenomenon. The cost
matrix is described in the equation below. ai and vj are the unit position vector
of agent i and vertex j in platonic solids that agents can potentially form. The
optimal assignment is to minimize the cost of matching agent i and vertex j. θij
stands for the angle between ai and vj .

C =


a1 · v1 a1 · v2 a1 · v3 a1 · v4
a2 · v1 a2 · v2 a2 · v3 a2 · v4
a3 · v1 a3 · v2 a3 · v3 a3 · v4
a4 · v1 a4 · v2 a4 · v3 a4 · v4

 =


cos(θ11) cos(θ12) cos(θ13) cos(θ14)
cos(θ21) cos(θ22) cos(θ23) cos(θ24)
cos(θ31) cos(θ32) cos(θ33) cos(θ34)
cos(θ41) cos(θ42) cos(θ43) cos(θ44)

 (2)

2.2 Design of Path Planning Algorithm

Particle Swarm Optimization (PSO) path planning algorithm is adopted to op-
timize trajectory and be of the shortest. This path planning algorithm is a
population-based stochastic optimization technique that solves problems in an
optimal way based on the movement and involution of swarms.

Vi(t+ 1) = ωVi(t) + c1r1(pbest(i, t)−Pi(t)) + c2r2(gbest(t)−Pi(t)) (3)

Pi(t+ 1) = Pi(t) +Vi(t+ 1) (4)

Vi and Pi are the velocity and position of agent i. r1,r2, used to avoid
premature convergences, are random numbers selected from [0,1]. c1 weighs the
importance of the particle’s own previous experiences. c2 weighs the importance
of the global learning of the swarm. ω is a value chosen from [0,1].A lower ω means
an increased chance of finding a global optimum but more time-consuming.



4 Shichen Fan et al.

Several intermediate points are selected between the goal locations and the
agent’s current position. Within a range from each intermediate point, a number
of random agents are generated to simulate swarms. Initialize a list of trajectories
by connecting the start location, one of the randomly generated points at each
intermediate point, and the goal location. Then by updating each agent’s position
and velocity to realize the generation towards the optimal trajectory for each
UAV.

A cost function is created to find the optimal trajectory of a short length and
the least obstacle collision possibility. The cost of violation is calculated based
on the internal distance between agent i and every obstacle k located within
agent i’s sensing range dith agent in Eq.6 . Ltrajectory stands for the trajectory
lengths of hunter agents. β is a constant number used to exaggerate the influence
of Costviolation.

TotalCost = Ltrajectory + β ∗Costviolation (5)

Costviolation(i) =

no∑
k=1

mean(max{1− di
rk

, 0}), i = 1, 2, ...na (6)

A pseudo-code describing how this path planning algorithm works is here:

Algorithm 1. Path Generation

Input: agent i’s current position(i) and its goal position T(i), and obstacles’
information
Output: agent i’s trajectory
Initialization
for nPop ← 1 to Population size do

1: Draw straight lines between the agent and its goal location and pick equally
spaced intermediate waypoints on the straight lines

2: Generate a random swarm around each intermediate waypoint and initial-
ize its velocity to be zero

3: Based on position(i), swarm around every intermediate waypoint and
T(i), interpolate a 1-D cubic function

4: Calculate TotalCost(i) using Equation 5. Marked down V iolation(i)
5: Less total cost means better solution. Update LocalBest(i) and GlobalBest

Main Loop
for it ← 1 to Max Iteration do

1: Update swarms’ positions and velocities using equation 4 and equation 3
2: Update position bounds and velocity bounds from velocity limits and po-

sition limits
3: Calculate TotalCost(i) using Equation 5. Marked down V iolation(i). Up-

date LocalBest(i) and GlobalBest
4: if CostV iolation(i) = 0, Break and output the GlobalBest trajectory

2.3 Collision-avoidance algorithm

A collision avoidance controller is developed to solve the downwash impact exist-
ing in 3D cooperative hunting. This developed controller is graphically presented



Multi-UAV Cooperative Hunting 5

in Fig.2, with the cylinders in grey and blue representing the regions where this
collision avoidance controller comes into effect, Rci , and the yellow cylinders rep-
resenting downwash impacts. When the grey and blue cylinder are invaded by
each other, this collision-avoidance algorithm detects xy-conflicts when agents
within rsens on a xy-horizontal plane and z-conflicts when agents within hsens

in altitude, then repulsive forces are added to agents themselves to repel from
the other agent.

Fig. 2: Reserved cylinder to detect xy-conflict or z-conflict

The developed controller is as follows: Each α-agent applies a control input
that consists of two terms as presented in Eq.7. q,p are agent’s position and
velocity. c1 and c2 are scaling factors for the position and the velocity differences.
∥.∥σ stands for saturated distance norm.

ui = fgi +fdi = c1
∑
j∈Ni

(ϕα(∥qj−qi∥σ)×ni,j)+c2
∑
j∈Ni

(bi,j(qj,qi)×(pj−pi)) (7)

where equation of ϕα(∆p) is included below.

ϕα(∆p) = ρ(
∆p

dβ
)× (σ(∆p− dβ)− 1) (8)

σ(z) =
z√

1 + z2
(9)

fgi is a gradient-based term that enables agent i to avoid its neighbouring
agents j. This is done by creating a repulsive force determined by position dif-
ferences, pointing from the neighbouring agents j to agent i.

fdi is a velocity consensus term that acts as a damping force to maintain
agent i in the same direction as agents j.

dβ is the distance at which both the gradient-based term and the velocity
consensus term become to 0.

ni,j is the unit vector along the line connecting qi to qj. bi,j(qj,qi) is the
heterogeneous adjacency term.

bi,j(qj,qi) = ρ(
∥qj − qi∥σ

dβ
) (10)



6 Shichen Fan et al.

∥z∥σ =

√
1 + ϵ× ∥z∥2 − 1

ϵ
(11)

In order to create a smooth potential function with finite cut-offs and smooth
adjacency matrices, bump function ρ(∆p) is developed as follow:

ρ(∆phor) =


1 ∆phor ∈ [0, rbet),
1
2 × [1 + cos(π × ∆phor−rbet

1−rbet
)] ∆phor ∈ [rbet, 1],

0 otherwise.

(12)

ρ(∆pver) =


1 ∆pver ∈ [0, hbet),
1
2 × [1 + cos(π × ∆pver−hbet

1−hbet
)] ∆pver ∈ [hbet, 1],

0 otherwise.

(13)

rbet and hbet are real numbers between 0 and 1.
A pseudo-code for the modified collision avoidance is as follows:

Algorithm 2. Collision Avoidance

1: Monitor positions and velocities of agent i and its surrounding agents j.
2: Apply repulsive force to agent i when an agent j is within the range of cylinder
Rci

of agent i.
3: If xy-conflict is detected,

then agent i moves away from agent j horizontally
4: If z-conflict is detected,

then agent i moves away from agent j vertically

A flow chart summarizes the path planning algorithm with collision-avoidance
algorithm and Hungarian vertices assignment algorithm.

Fig. 3: Flow Chart for the Trajectory Generation with Collision-avoidance Algo-
rithm and Hungarian Vertices Assignment



Multi-UAV Cooperative Hunting 7

2.4 Controller

A cascade PI controller combined with the PX4 native onboard controller is used
here. The cascade PI controller acts as an outer loop controller to yield desired
angles and thrust by sending its outputs to the inner loop attitude control.
The inputs for the position controller are the differences between hunter agents’
positions and its desired positions (x) and velocities (v), and the controller
outputs u, consists of pitch angles (θ), roll angles (ϕ), and thrust force (T ).

e = Kpxx+ v (14)

u =

θ
ϕ
T

 = −Kpve−KIv

∫
e dt (15)

u = −KpxKIv

∫
x dt− (KpxKpv +KIv)x−Kpvv (16)

KPx , KPv , and KIv are gains matrices and their values are tuned to gain a
good performance. Their values are set to be the same as the gain values used
in Chen’s thesis [2] to better compare the proposed path planner with Chen’s
flocking-based path planner.

3 Implementation and Comparisons

This section has four hunter agents who cooperatively hunt a target in different
scenarios in a Gazebo simulation environment to compare the performance of
the proposed solution with the other solutions as mentioned in the section of
Introduction. In particular, the flocking navigated solution is applied to coop-
erative hunting in an obstacle-free environment with a static target. Also, the
distributed sliding mode position controller is applied to cooperative hunting in
a cluttered environment with a moving/static target. In particular, these sim-
ulation results are compared in three cases, including cooperative hunting of a
static target in the obstacle-free environment, cooperative hunting of a static
target when there is a static obstacle in the environment, cooperative hunting
of a moving target in an obstacle-free environment.

To make the simulations comparable, for every scenario, we set the same ve-
locity limits (Vmax = ±5.0m/s), the same acceleration limits (amax = ±5.0m/s2),
and the same time interval (dt = 0.2sec).



8 Shichen Fan et al.

(a) Proposed Solution, Total Trajectory
Length = 26.30

(b) Flocking Navigated Solution, Total Tra-
jectory Length = 36.00

Fig. 4: Comparison when starting locations are (4,4,5), (4,-4,3), (-4,4,3), (-4,-
4,5)m, target hovering at (0,0,3)m, no obstacle

(a) Proposed Solution, Total Trajectory
Length = 36.07

(b) Distributed Sliding Mode Position Con-
troller, Total Trajectory Length = 57.02

Fig. 5: Comparison when starting locations are (4,4,5), (4,-4,3), (-4,4,3), (-4,-
4,4)m, target hovering at (0,0,8)m, no obstacle

All three solutions succeeded in cooperative hunting when there is no obstacle
and target is not moving in Fig.4 and Fig.5. The proposed solution is observed
to have shorter total trajectory lengths than the other two existing solutions.
Also, this solution has a faster convergence than the distributed sliding mode
solution.



Multi-UAV Cooperative Hunting 9

(a) Proposed Solution, Total Trajectory
Length = 53.94

(b) Distributed Sliding Mode Position Con-
troller, Total Trajectory Length = 65.51

Fig. 6: Comparison when starting locations are (4,4,5), (4,-4,3), (-4,4,3), (-4,-
4,4)m, target hovering at (0,0,8)m, a static cylindrical obstacle of radius=0.5m
and height=10m, at location x=2.5m, y=2.5m

Hunter agents path around the obstacle and succeeded in cooperative hunting
with both solutions. The same observation as in an obstacle-free environment,
the proposed solution has a faster convergence and shorter total trajectory length
than the distributed sliding mode solution. Zipzaggings are observed in the pro-
posed solution’s trajectory in Fig.6, which is the result of repulsive force from
the collision-avoidance algorithm and the attractive force from the PSO path
planning algorithm. This phenomenon leads to a future task - developing a so-
lution to smooth trajectories.

(a) Proposed Solution
(b) Distributed Sliding Mode Position Con-
troller

Fig. 7: Comparison when starting locations are (4,4,5), (4,-4,3), (-4,4,3), (-4,-
4,4)m, target moving in a 2-dimensional circular path, center at (0,0,8)m, r=4m,
v=0.1m/s, no obstacle

When the target begins to move, both solutions are observed to be able to
make hunters agents encircle and follow this moving target in Fig.7. Note that
the proposed solution generates waver trajectories than the other solution. This
phenomenon is because the proposed solution is running vertices assignment



10 Shichen Fan et al.

online during the whole process. When the target moves, the relative positions
between target and agent keep changing, leading to a potential change of vertices
assignment. In the other solution, vertices assignment was done offline before the
simulation, leading to the waver trajectories generated by the proposed solution.

4 Conclusion

This paper presents a solution to realize the cooperative hunting of a static/moving
target in a cluttered environment with obstacles. The solution helps to assign
corresponding target locations to the hunter agents to reduce the downwash im-
pact possibility being caused by a trajectory crossing; meanwhile, this solution
navigates the hunter agents to path around obstacles to hunt and encircle target
by addressing time-optimal hunting. In addition, this solution includes a cascade
PI controller to control the hunter agents to follow the generated trajectories. A
comparative study between this proposed solution and Chen’s flocking navigated
solution is conducted in an obstacle-free environment when the target is static.
Another comparative study between this proposed solution and Ge’s distributed
sliding mode controller is also conducted where the target is static/moving and
an obstacle in the environment. Simulation results show that the proposed so-
lution can have hunter agents succeed in cooperative hunting in a cluttered
environment and when the target is static or even moving. Compared with the
other existing solutions performances, the proposed solution is observed with a
faster convergence than the distributed sliding mode solution.

As discussed in the Section 3, one of the future considerations could be de-
veloping a solution to smooth trajectories.

References

1. Chen*, C.-C. & Liu, H. H. T. Adaptive Modelling for Downwash Effects
in Multi-UAV Path Planning. Guidance, Navigation and Control, to appear
(Jan. 1, 2022). published.

2. Chen, C.-C. Practical Implementation of Multi-UAV Flocking Path Planning
(University of Toronto (Canada), 2021).

3. Liao*, J., Liu*, C. & Liu, H. H. T. Model Predictive Control for Cooperative
Hunting in Obstacle Rich and Dynamic Environments in IEEE International
Conference on Robotics and Automation (June 1, 2021), 1–8. https://www.
flight.utias.utoronto.ca/fsc/wp-content/uploads/2021/05/icra2021jl.mp4%
20https://www.flight.utias.utoronto.ca/fsc/wp-content/uploads/2021/05/
icra2021jl.pdf. published.

4. Song, G., Peng, S. & W, X. Distributed target-encirclement control of multi-
ple quadrotors with a leader-follower framework in 15th International Con-
ference on Innovative Computing, Information and Control (2021).

5. Furtado, J. & Liu, H. H. T. Multi-UAV Path Planning and Guidance for
Cooperative Hunting in a Cluttered Environment. Journal of Intelligent and
Robotic Systems (Jan. 1, 2019). published.


