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In this paper, a robust path following control law for a quadrotor Slung Load Transport
System is developed. A Gaussian Process-augmented Extended Kalman Filter is proposed
to estimate payload states. In this approach, Gaussian Processes are used to compensate
for unmodelled dynamics in the process model, and they are trained on previously collected
data of a Slung Load Transport System in flight. Both simulations and experiments verify
the estimation and control system framework and demonstrate successful stabilization and
trajectory tracking of the Slung Load Transport System, overcoming model inaccuracy and
disturbances.

I. Nomenclature

F−→8 = NED inertial frame
F−→1 = Quadrotor body-fixed frame, fixed at the mass center of the quadrotor vehicle
<1 = Quadrotor mass
J1 = Quadrotor moment of inertia
<? = Payload mass
; = Cable length
g� = Gravity vector in the world frame
ℓ ∈ R3 = Vector spanning the length of the cable
x? ∈ R3 = Absolute position of the payload mass center
v? ∈ R3 = Absolute velocity of the payload mass center, expressed in F−→8

r ∈ R2 = Relative position of the quadrotor mass center w.r.t. the payload, projected onto the XY plane of F−→8

v ∈ R2 = Relative velocity of the quadrotor mass center w.r.t. the payload, projected onto the XY plane of F−→8

¤̃v ∈ R2 = Difference between ¤v predicted by some dynamics model and the true value
B ∈ R3×2 = Projection from v to the time derivative of ℓ
R81 ∈ SO(3) = Rotation of F−→8 relative to F−→1

81 ∈ R3 = Angular velocity of the F−→1 relative to F−→8 , expressed in F−→1

f! ∈ R3 = Total thrust delivered by the actuators
3 ∈ R3 = Total torque delivered by the actuators
d? ∈ R3 = Disturbance acting on the payload
d1 ∈ R3 = Disturbance acting on the quadrotor body
d) ∈ R3 = Sum of disturbances acting on the SLTS
e? ∈ R3 = Positional (radial) error of the payload from some given path
eE ∈ R3 = Velocity (tangential) error of the payload from some given path
× : R3 → R3×3 = Maps a 3-vector to a 3-by-3 skew-symmetric (cross product) matrix
∨ : R3×3 → R3 = The inverse operation of the × mapping
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II. Introduction

Drone delivery is an emerging application of Unmanned Aerial Vehicles. Slung Load Transport Systems (SLTS), i.e.
carrying a slung payload externally with a cable, is one approach proposed for payload delivery. Extensive studies

have been done on developing payload stabilization and trajectory tracking [1–4] for SLTS. Various methodologies
such as geometric control [2], adaptive control [3], and passivity-based control [4] have been proposed or adopted.
Successful development of dynamics models for SLTS [2, 5] also ushered in an abundance of works applying Optimal
Controllers or Model Predictive Controllers (MPC) [6, 7] to SLTS control. In our own previous work, a dynamics
model for SLTS [8] was developed and a robust path-following controller was designed based on the Active Disturbance
Rejection Controller (ADRC) concept. This controller has been applied to control both simple SLTS with a single
vehicle and payload [9], and cooperative SLTS where multiple quadrotor UAVs carry a single payload [10, 11], to carry
out path following in the presence of disturbances. This controller is also proven to be exponentially stable [11] and
requires no feedback of higher order motion terms, e.g. snap/jerk.

A key challenge in developing controllers for SLTS is implementing payload tracking and pose estimation to provide
feedback, whereas many previous works carried out simulations only or relied on instrumented payloads. In the case of
our own previous work, high-precision motion capture systems were used. Zurn et. al. [6] used an onboard camera to
track a payload tagged by Aruco visual fiducial tags that enable direct payload pose sensing for an MPC. Tang et. al.
[12] made use of a downward-facing camera to track a slung load, while measurements are filtered by an Extended
Kalman Filter (EKF). Li [7] proposed an MPC framework where a tagged payload is tracked by a computer vision and
an EKF is used to estimate payload pose. Despite their promise, Kalman Filters built on vision-based payload trackers
employ SLTS dynamics models as their process models, so their performance is readily impacted by model uncertainty
or mismatch.

However, compensating for model inaccuracy in SLTS dynamics remains an open question. A major focus of
ongoing research is addressing uncertainty in payload inertial parameters [13–15]. Aghdam et. al. [13] modeled
varying payload center-of-mass as a mass-spring system. Li at. al. used the parameter-robust Linear Quadratic Gaussian
controller to achieve robustness against payload mass variation. Another aspect of model inaccuracy in SLTS dynamics
is that the dynamics of the cable itself are often neglected, even though it is shown to be a significant component of
SLTS dynamics. Goodarzi et. al. modeled an SLTS treating the cable as serially connected links [16] and designed
a geometric controller to bring the SLTS to the desired position while minimizing cable flex [17, 18]. Kotaru et. al.
showed that a geometric controller developed under the inelastic cable assumption remains viable after considering
cable elasticity [19]. As for identifying and correcting for model uncertainty and disturbances in general, two works
employing machine learning techniques [20, 21] have been identified to the best of our ability. Kang et. al. proposed a
slung load controller in which a nonlinear payload oscillation damper is extended by an adaptive neural network to
correct for model uncertainty or wind gusts [20]. Vargas and Enrique trained an unstructured black-box algorithm that
estimates the load position given quadrotor pose and pilot inputs [21].

Data-driven estimation [22, 23] is identified as another potential answer to this question. This concept exploits
Gaussian Processes (GP) [24], trained on empirical data, to estimate model uncertainty or mismatch, which can be
applied as a correction to some nominal dynamics model. Ko and Fox proposed substituting GPs for process or
observation models in various Bayesian filters, including the EKF [23]. They demonstrated that GP-augmented filters
improve estimation accuracy that would otherwise be impaired by model mismatch.

In this paper, our main contribution is proposing a novel Gaussian Process-augmented Extended Kalman Filter to
estimate payload states for a robust controller for SLTS, which is based on the framework in [11]. Our estimation and
control framework is depicted in Figure 1.

Trajectory reference − Robust Controller
fE = f̂0 + ˆf0 + f1 + fC

GPEKF
x̌: = f (x̂: , u: ) + -�% (z: )

SLTS Dynamics
M¤v = −Cv + f + gControl

Outputs f
r: Errors

e? , eE

System outputs
ŷ:

State Estimates
x̂:

Fig. 1 Proposed system architecture

The remainder of this paper is organized as follows. In section III, the SLTS dynamics model and the robust
path-following controller are reviewed. In sections IV, the Gaussian Process concept is introduced and in section V, the
GP-EKF is outlined. Finally, in section VI, experimental results are presented.
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III. Problem Formulation

A. SLTS Dynamics
Our nominal model of SLTS dynamics is taken from that in [10] and specialized for a single quadrotor. A quadrotor

with mass <1 attached to a payload with mass <? by a cable with length ; is considered. The NED inertial frame is
denoted by F−→8 and the quadrotor body-fixed frame is denoted by F−→1. The vector spanning the length of the cable is
ℓ ∈ R3. Its projection on the x/y-plane of F−→8 is r B ℓ1:2. The SLTS is visualized in Fig. 2.

F−→8

F−→1

;
ℓ

r

x?

Fig. 2 SLTS geometry

Since the cable has a fixed length viz. ‖ℓ‖ ≡ ;, the 2-vector r sufficiently describes the quadrotor’s position relative
to the payload. Similarly, the quadrotor’s velocity relative to the payload is described by a 2-vector v B ¤r. Together,
{r, v} fully define ℓ and ¤ℓ, which embody the 3D position and velocity of the payload relative to the quadrotor UAV

ℓ =

[
r

−
√
;2 − r>r

]
¤ℓ B

[
12×2

r>√
;2−r>r

]
︸     ︷︷     ︸

B

¤r︸︷︷︸
v

= Bv (1)

The equations of motion of the slung load transport system are defined below.

1. SLTS Rotational Dynamics
The states of the SLTS rotational subsystem are Xrot : {R81 ,81}. The input to the SLTS rotational subsystem is the

torque acting on the quadrotor bodyUrot : {3}. Thus the SLTS rotational equations of motion are

Σrot :

{
J ¤81 = −8×

1
J81 + 3

¤R81 = R818×1
(2)

2. SLTS translational dynamics
The states of the SLTS translational subsystem are Xtrans :

{
x? , r, v? , v

}
. These states are grouped into the

generalized coordinate vector x =
[
x>? r>

]
and the block velocity vector u =

[
v>? v>

]>
. The input to the SLTS

translational subsystem is thrust acting on the quadrotor body Utrans = {f!}, which is in practice treated as a scalar
thrust aligned to the z-axis of F−→1 , so f! = 5!R8113. Hence, the SLTS translational equations of motion are

Σtrans :

{
¤x = u

¤u = S−1 (−Iu + f + g)
(3)

where S =

[
(<? + <1)1 <1B
<1B> <1B>B

]
I =

[
0 <1 ¤B
0 <1B> ¤B

]
f =

[
f!

B>f!

]
g = S

[
g�
0

]
(4)

An alternative notation for (3), when it is used individually as a state equation in estimator design, is ¤x = f (x, u),
where x ∈ R10 and u ∈ R3 are the state and input vectors formed by stacking elements in Xtrans andUtrans respectively.
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B. Robust Path-Following Controller
A robust controller for the SLTS is designed based on that proposed in [11] and specialized for a single quadrotor

UAV.
Firstly, the control law corrects for a position error e? ∈ R3 and a velocity error eE ∈ R3 of the payload. Given

an initial waypoint p 9 and a destination waypoint p 9+1 for the payload, the position error is simply the perpendicular
distance between the payload position x? and the line between the two waypoints,

e? = x? − p 9 −
(
x? − p 9

)> n 9+1
9

n 9+1
9

(5)

where n 9+1
9

is the unit heading vector between the waypoints and v3 . Next, the velocity error is

eE = v? − v3 (6)

where v3 is the desired velocity vector defined by some cruise speed Ecruise ∈ R+ multiplied to n 9+1
9

.
Secondly, the control law minimizes payload displacement at equilibrium, embodied by the payload swing error -̂

-̂ = :! (r − r̂3) where r̂3 = ;
d̂) 1:2

‖<6g� − d̂) ‖
(7)

where r̂3 is the equilibrium payload position, dependent on the disturbance acting on the SLTS d̂) , itself estimated by

d̂) B _)

(
(<? + <1)v? + <1Bv −

∫ C

0
(f! + d̂⊥) + d̂) + (<? + <1)g� 3g

)
(8)

where d̂1 B ^

∫ C

0
B(d1 − d̂1)3g d̂⊥ B

(
1 − ℓℓ

>

;2

)
d̂1 B = B

(
B>B

)−1 B> (9)

Hence, the control law is given by

fE = f̂0 + f̂0 + f1 + fC where

f̂0 = −<1
( ¤̂' + :!Bv + ¤B-̂

)
f̂0 = − 0

(
v? + '̂ + B (v + -̂)

)
f1 = <1

( ¤' + : ?s?
)

fC = −<1g + f̂3 − d̂⊥

'̂ = : ?e? + F̂ − v3

F̂ =

∫ C

0
−_F̂(g) + :A R̂(g)3g

R̂ = B (v + -̂)
f̂3 = −(<?g� + d̂) )

(10)

The exponential stability of this controller can be proven by specializing the procedure in [11], taking the number of
vehicles to be 1 and ignoring all terms about multi-quadrotor collaboration.

C. Attitude Tracking Controller
The attitude tracking controller serves the above path-following controller by sending a torque input 3 to the

rotational subsystem Σrot and a thrust input 5! to the translational subsystem Σtrans to deliver fE . The thrust input is
obtained directly as 5! = ‖fE ‖. The torque input 3 is computed from a desired attitude R813 ∈ ($ (3) given by

R813 =
[
nG nH nI

]
where nI =

fE
5!

nG =
[
cosk3 sink3 − cos k3nI1+sin k3nI2

nI3

]>
nH =

n×InGn×InG (11)

where the desired heading angle k3 ∈ [−c, c) is arbitrarily specified.
The desired attitude R813 and desired angular velocity 813 is set of states

{
R813 , 813

}
to be tracked. Any controller

capable of driving some suitably defined rotation errors X̃rot =
{
R̃, 8̃

}
to zero can preserve the upstream robust

path-following controller’s stability properties. Roza and Maggiore [25]’s Almost Globally Asymptotically Stable
(AGAS) attitude tracker is viable for this purpose. Here, the desired angular velocity is determined by83 =

(
R>
813
¤R813

)∨
,

the attitude error is R̃ = R>
813

R81 , the angular velocity error is 8̃ = 81 − R>813 , and the control law is

3 = −1l8̃1 − 1A eA − 8̃×1 P8̃1 + 8
×
1 Pl − P

(
8̃×1R̃>83 − R̃> ¤83

)
where eA =

3∑
8=1
e×8 R̃e8 . (12)
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IV. Gaussian Process-Approximated SLTS dynamics
Gaussian Processes (GP) [22, 24] are used to predict errors in the SLTS dynamics and compensate for them. The

unobservable true SLTS dynamics are denoted by ftrue, which is measured by ŷ

ŷ = ftrue (x, u) + w (13)

where disturbances, noise and model errors are embodied in w ∼ N (0,�), assumed to be Gaussian.
The corrected SLTS dynamics is denoted by f∗ and composed of the nominal SLTS model f, which implements the

dynamical equation in equation (3), plus the GP correction

f∗ (x, u) = f (x, u)︸  ︷︷  ︸
S−1 (−Iu+f +g)

+B3- (z) (14)

where - is the a-posteriori mean of the GP, z is the Gaussian Process input formed from a subset of {x, u}, and B3 is a
projection from the output space of the GP to the state space of the dynamical equation. Furthermore, the training
feature samples are denoted by Z and the test point by z∗. As such, the posterior distribution at z∗ is also Gaussian with
mean and covariance

- (z∗) = k>∗
(
K + f2

=1
)−1

z

� (z∗) = ^ (z∗, z∗) − k>∗
(
K + f2

=1
)−1

k∗
where

k∗ = ^ (z∗,Z)
K = ^ (Z,Z) + f2

=1
(15)

where the kernel function ^ is chosen to be the Squared Exponential Kernel. Its definition is given by

^(z8 , z 9 ) B f2
5 exp

(
−1

2
(
z8 − z 9

)>W−1 (
z8 − z 9

) )
+ f2

= (16)

where W , diag
(
ℓ2) is a diagonal matrix of length scales, f2

5
is the process variance, and f2

= the noise variance.
In our formulation, the true payload acceleration relative to the quadrotor UAV is assumed to contain a component

that embodies the error between actual system dynamics and the nominal model. Physically, this component is considered
to encompass effects of variation of payload mass, aerodynamic effects and drag on the payload, dynamics of cable
elasticity or flex, etc. This quantity is named the payload acceleration error ¤̃v and is assumed to be a function of payload
relative position r and velocity v. The GP acts as this function and estimates ¤̃v. In the notation of (14), this is written as

¤̃v = - (z) where z B

[
r
v

]
(17)

The hyperparameters
(
ℓ, f 5 , f=

)
in the kernel function (16) determine the behavior of - and thereby the quantitative

mapping from (r, v) to ¤̃v. To determine these hyperparameters (c.f. fitting the GP), maximum likelihood optimization is
performed on previously collected data. In creating this dataset, for each sample : the payload acceleration errors are
computed by

¤̃v: =
v:+1 − v̂:+1

X):
(18)

where the predicted payload velocity v̂:+1 is given by the base dynamical equation (3) and the actual payload velocity at
the next timestep v:+1 is measured.

V. Payload State Estimation
The purpose of state estimation is to employ our SLTS dynamics model and sensor measurements to methodically

estimate states in the SLTS with the aid of potentially intermittent or noisy exteroceptive measurements.
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A. State Dynamics
The estimator states are the states of the SLTS translational subsystem x ,

[
x>? r> v>? v>

]
, and the estimator

inputs are identical to that of the SLTS translational subsystem u = f! . The state dynamics equations are the SLTS
translational equations of motion augmented by GP correction.

f (x, u) :

{
¤x = u

¤u = S (−Iu + f + g) + B3- (z)
(19)

The discrete state dynamics are obtained by integrating equation (19) by the Euler method. The nominal dynamics
portion of the state dynamics equation is linearized by a symbolic algebra application, while the GP prediction is
differentiated using the means outlined in [26].

m- (z)
mx

=
mk∗

mz

((
K + f2

=1
)−1

z
)
mz
mx

(20)

where z is defined in equation (17), so the final partial derivative is a simple projection from the state x to the selected
GP features (r, v).

The linearized system and input matrices are denoted by F: and G: . The inputs f! are affected by noise, assumed to
be drawn from a zero-mean multivariate Gaussian distribution, for a diagonal covariance matrix Q ∈ R3×3

B. Measurement Model
The measurement model describes the relationship between the system states and exteroceptive measurements.

Three sources of exteroceptive measurements are considered
1) Quadrotor absolute position, output by GNSS/INS positioning modules
2) Quadrotor absolute velocity, output by GNSS/INS positioning modules
3) Payload position relative to the quadrotor, likely measured by a vision-based method

which are modeled by the following equations

h (x: ) =

habs−pos (x: )
habs−vel (x: )

hrel (x: )

 where
habs−pos (x: ) = x? + ℓ
habs−vel (x: ) = v? + Bv

hrel (x: ) = ℓ
(21)

These equations are also linearized by a symbolic algebra application and the linearized measurement matrix is
denoted by H: . Similarly, the measurements are assumed to be affected by zero-mean Gaussian noise, making for a
diagonal covariance matrix R ∈ R9×9

C. Extended Kalman Filter
Payload state estimation is implemented as a standard Extended Kalman Filter
1) Prediction: In the prediction step, a new state estimate and error covariance estimate are computed using the

state dynamics model (19) and the linearized state and input matrices

x̌:+1 = f (x̂: , u: ) (22)

P̌:+1 = F: P̂:F>: +G:QG>: (23)

2) Correction: In the correction step, the state estimation and error covariance estimate is updated using exteroceptive
measurements, the measurement model (21) and the linearized measurement matrix

ỹ: = z: − h (x: ) (24)

K: = P̌:H>:W−1
: where W: = H: P̌:H>: + R (25)

x̂:+1 = x̌: +K: ỹ: (26)

P̂:+1 = P̌: +K:H: P̌: + P̌:H>:K>: +K:W:K>: (27)

Implementation-wise, the correction equations (24) through (27) are run asynchronously, as soon as measurements
from any source out of the three listed previously are received. This ensures that the slowest sensor, i.e. payload relative
position which must be measured by some visual fiducial system, does not hold back faster sensors.
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VI. Experimental Results
Departing from the past practice for validating our controller’s theoretical predecessors [10, 11], our estimation and

control framework is first verified in the Gazebo simulation environment [27] before real-life flight tests.

A. Simulated SLTS Path Following Missions
A custom model for an SLTS, comprising a quadrotor (1.52 kg) with a downward facing camera, a payload (0.5kg)

tagged by an Apriltag (36h11) [28], and a cable (1.6m), is defined as seen in figure 3a. Two path profiles were defined
for our simulation tests. Firstly, a square path profile consisting of four 80m long sides at a constant altitude of 10m, to
be flown at a speed of 2m/s, was defined

(a) Simulated SLTS Model (b) SLTS following a square path

(c) (blue) Payload lateral and (orange) vertical position error
(upper) and velocity error (lower)

(d) (blue) Payload relative position r and (orange) swing angle
(upper) and velocity v (lower)

Fig. 3 Results of square-path following experiment

Figure 3b showed that the SLTS tracked the square path with little visible deviation. Figure 3c quantified this,
showing that magnitude of the lateral position error is generally less than 0.5410m during level flight, peaking at
1.676m as the SLTS rounds a corner. The root-mean-square (RMS) value of the lateral position error is 0.4381m.
Vertical position error never exceeded 0.1157m, and its RMS value is merely 0.04343m. The velocity error magnitude
is generally less than 0.9817m/s but peaks at 3.512m/s in a turn. Its RMS value is 0.7492m. Figure 3d shows that our
controller effectively reduced cable oscillation to almost imperceptible levels during level flight. The magnitude of the
payload lateral position relative to the quadrotor is generally less than 0.1380m, spiking up to 0.2609m in a turn. The
magnitude of the payload relative velocity is below 0.4188 m/s in level flight while peaking at 0.8264m/s in turns.
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Secondly, a near-circular mission profile consisting of a circle 15 meters in radius at a constant altitude of 10m, split
into 10 straight segments, to be flown at a speed of 2m/s is defined.

(a) SLTS following a near-circle path (b) (blue) Payload lateral and (orange) vertical position error
(upper) and velocity error (lower)

Fig. 4 Results of circle path following experiment

Figure 4a showed that the SLTS tracked the near-circle path with some slightly visible deviations. This is quantified
by Figure 4b which shows that the magnitude of the lateral position error is less than 1.040m at all times and its RMS
value is 0.4619m. Vertical position error never exceeded 0.1182m, and its RMS value is 0.5515m. The magnitude of
velocity error never exceeds 1.4306m/s, and its RMS value is 0.6912m.

In summary, the SLTS exhibited acceptable position-tracking errors in simulation exercises. Although the SLTS did
not meet the same high level of tracking accuracy, demonstrated in the first experiment, during the circle path following
experiment, this is expected because controller gains were tuned to favor payload swing suppression over aggressive
position tracking, such that the payload is less likely to swing out of the camera’s field of view.

B. State Estimator Evaluation
The performance of the GP-EKF is quantitatively evaluated on payload relative position estimation performance.

(a) Estimation Error in payload relative position (r) along the
x (upper) and y (lower) axis

(b) Magnitude of error in payload relative position, with and
without GP-EKF

Fig. 5 Performance of GP-EKF in estimating payload relative position
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Figure 5a shows the payload relative position error from the GP-EKF about each axis, each with a 3f envelope
showing the estimated standard deviation of payload relative position estimation. The 3f envelope bracketed the
estimation error in most places, showing that the standard deviation estimation is consistent.

Figure 5b shows the magnitude of the payload relative position error from the GP-EKF (solid-blue line) and the
visual fiducial system (semi-transparent blue line). This error is the Euclidean Norm of the difference between the
estimated r and the ground truth value. The maximum payload relative position error estimated by the GP-EKF is
0.6766m whereas that measured by Apriltag tracking is 0.8177m. The RMS value of these errors is 0.1377 and 0.1234
respectively. As expected, including the GP-EKF leads to greater accuracy in payload relative position estimation r. An
additional observation is that the GP-EKF outperforms raw Apriltag tracking with more payload swing.

C. Outdoor Flight Tests of SLTS Path Following Missions
For outdoor flight tests, a custom quadrotor (shown in flight in Figure 6a) is used. This quadrotor vehicle weighs

1.09kg and has a thrust-to-weight ratio of approximately 3:1. The payload weighs 0.54kg. A Pixhawk 4 autopilot is used.
For absolute position feedback, an UBlox M8N GPS unit is used. For payload position feedback, a downward-facing
Raspberry Pi camera is used for observing the payload. Our controller runs on a Jetson Nano onboard computer, which
is connected to the autopilot by a serial data link and communicates with a ground control station via a WiFi link, whose
effective range is 50m with outdoor WiFi extenders.

For flight tests, a square path profile comprising four 10m sides at an altitude of 10m, to be flown at 2m/s, is defined.

(a) SLTS airborne in flight tests (b) SLTS following a square path

(c) Payload lateral (blue) and vertical (orange) position error
(upper) and velocity error (lower)

(d) (blue) Payload relative position r and (orange) swing angle
(upper) and velocity v (lower)

Fig. 6 Results of outdoor flight tests
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Figure 6b shows that the SLTS tracked the square path successfully, with visible vertical deviation during
0.0B < C ≤ 5.26B when the SLTS is actively ascending to the set height. Otherwise, Figure 6c shows that the magnitude
of lateral position error is largely below 1.0m, with spikes up to 1.766m during turning. The RMS value of this lateral
position error is 0.7519m. On the vertical axis, the SLTS ascended 2.952m over 0.0B < C ≤ 5.26B. Then, it tracked the
desired altitude with a vertical position error of no more than 0.9413m. The RMS value of the vertical position error is
0.5468m. Furthermore, the magnitude of velocity error is no more than 1.257m during level flight (i.e. only considering
C > 5.0B), only spiking up to 3.3718m/s during turning. The RMS value of velocity error magnitude is 1.321m.

The SLTS path tracking accuracy in outdoor flight tests is comparable with that shown in simulations, with the
circle path following simulation (Figure 4) bridging the gap between the idealized results from the square path following
simulation (Figure 3) and the results of outdoor flight tests here. Furthermore, robustness to actuator model uncertainty
was demonstrated by our controller, since actuators output less thrust than what was modeled for during flight tests,
likely due to battery voltage sag. Our controller was able to compensate for the initial shortfall in thrust force and bring
the SLTS to the desired altitude within 5.26 seconds.

Figure 6d shows that our controller reduces payload oscillation to acceptable levels as well. The magnitude of the
payload lateral position relative to the quadrotor is no more than 0.1598m generally while spiking to 0.3532 as the SLTS
rounds a corner. This corresponds to a 12.5-degree swing angle at worst. Similarly, despite fluctuations in the magnitude
of payload relative velocity, including peaks as the SLTS turns, the value of payload relative velocity never exceeds
1.384m/s. This reflected a similar level of performance in limiting payload motion compared to results from simulations.

VII. Conclusion
In this work, a novel GP-EKF and Robust Path-Following Controller framework for a Quadrotor Slung Load

Transport System is proposed. A robust controller that is based on a predecessor with proven stability qualities was
developed. To provide feedback for this controller, an Extended Kalman Filter, using Gaussian-Process augmented
SLTS dynamics as its process model is proposed.

Simulations of path-following missions, followed by flight tests in outdoor conditions, were carried out to demonstrate
the capability of our framework. The SLTS was stabilized on the reference path with an accuracy on the order of a few
meters, and payload motion relative to the transporting SLTS during the mission was effectively suppressed. These
claims are verified in outdoor conditions, where wind disturbances and model uncertainty take a visible toll, but are
effectively overcome by our estimation and control framework. Furthermore, our own previous works, albeit the basis
for our robust controller, were verified exclusively in indoor environments aided by motion capture systems. With these
flight tests, our previous work is surpassed.

In the future, more work can be done to qualitatively evaluate the impact on path-following performance by each
element, i.e. the EKF, the GP, and the robust controller, in our framework. Moreover, a fine-grained formulation of GPs
may be proposed to correct a specific aspect of SLTS model inaccuracy, such as the effects of cable flexibility.

To aid future work, our implementation of the core robust controller is open-sourced at https://github.com/
Hs293Go/slts_control
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