A UDE-based Controller with Targeted Filtering for the Stabilization of a Fixed-Wing UAV in the Harrier Maneuver

Pravin Wedage, Hugh Liu

Flight Systems and Control Lab (FSC), University of Toronto Institute for Aerospace Studies (UTIAS)

ACC 2023, May 31 - June 2, 2023 | San Diego, CA, USA

June 2, 2023

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Outline

1 Background

2 Problem Description

- Low Speed, High Angle-of-Attack Aerobatic Maneuvering
- Time-Varying Effects During Maneuvering

3 Control Solution

- Uncertainty and Disturbance Estimator
- Targeted UDE Filtering
- Simulation Results

4 Conclusion

Background

- Despite long range/endurance, many small UAV applications use multirotor vehicles over fixed-wing vehicles due to better low-speed control
- Solution: expand low speed operating envelope using aerobatic maneuvers to allow use of fixed-wings in applications that require both long range and low speed

2. Problem Description

2.1 Low Speed, High Angle-of-Attack Aerobatic Maneuvering

Fig 1: Lift coefficient vs angle-of-attack for a symmetric 2D airfoil.

At lower airspeed, fixed-wing vehicles must increase angle-of-attack to maintain lift and altitude

Below stall speed, small UAVs can maintain altitude using thrust. However, dynamics are more nonlinear, and control is more challenging

2. Problem Description

2.1 Low Speed, High Angle-of-Attack Aerobatic Maneuvering

Dynamics Challenges

- Nonlinear lift response
- Varying local velocities across the airframe
- Aerodynamic interaction between lifting surfaces
- Time-dependent effects
- Many of these features are difficult to accurately model

2. Problem Description 2.2 Time-Varying Effects During Maneuvering

- Time-varying dynamic effects and disturbances present
- High angle-of-attack results in varying lift, drag due post-stall phenomena on airfoils
- Additional dynamic modes observed at high angle-of-attack

Fig 2: Vortices shed with alternating rotation directions over time, causing a fluctuating lift coefficient.

2. Problem Description 2.2 Time-Varying Effects During Maneuvering

- Typical wind disturbances have more pronounced effect during high angle-of-attack
- Velocity perturbations can cause sudden changes in attitude

2. Problem Description

Summary of problem:

- Model uncertainty
- Nonlinearities
- Time-varying effects

Robust control solution to address all of these?

Pravin Wedage, Hugh Liu | A UDE-based Controller with Targeted Filtering for the Stabilization of a Fixed-Wing UAV in the Harrier Maneuver

3. Control Solution

3.1 Uncertainty and Disturbance Estimator

Uncertainty and Disturbance Estimator (UDE) capabilities:

- Estimate and compensate for disturbances, given a nominally stabilizable system
- Two DOF freedom in designing nominal controller u₀ and disturbance estimator d
- Lumped disturbance estimation, with frequency based estimation capabilities

$$\dot{x} = f(x, u) + d$$
 (1)
 $u = u_0 - \hat{d}$ (2)

3. Control Solution3.1 Uncertainty and Disturbance Estimator

Application to this problem:

- Nominal aircraft system typically performs well with linearized models when controlling for fixed-operating points
- Propwash keeps aircraft inboard wing, fuselage, tail in linear aerodynamic response range
- Linear control solution developed with suitable derivation of aircraft longitudinal and lateral linearized model during aerobatic maneuvers

$$\dot{x} = Ax + Bu + d \quad (3)$$

$$Bu = Bu_0 - \hat{d} \qquad (4)$$

$$Bu = -BKx - \hat{d} \qquad (5)$$

 $oldsymbol{A} \in \mathbb{R}^{n imes n}$ $oldsymbol{B} \in \mathbb{R}^{n imes m}$

3. Control Solution

3.1 Uncertainty and Disturbance Estimator

Design of disturbance estimator:

- Disturbance estimate obtained by filtering system dynamics
- Typical applications design filter in the frequency domain based on disturbance frequency

$$egin{aligned} m{G}_{\!f}(s) &= [g_{ij}] \in \mathbb{C}^{n imes n} \ g_{ij} &= 0, i
eq j \ g_{ij}
eq 0, i = j \end{aligned}$$

$$\hat{\boldsymbol{d}} = g_f * \boldsymbol{d}$$

$$\hat{\boldsymbol{D}} = \boldsymbol{G}_f(s)\boldsymbol{D}$$

$$= \boldsymbol{G}_f(s) (s\boldsymbol{X} - \boldsymbol{A}\boldsymbol{X} - \boldsymbol{B}\boldsymbol{U})$$

$$= \left([\boldsymbol{I} - \boldsymbol{G}_f(s)]^{-1} \boldsymbol{G}_f(s) \right) \times$$

$$(s\boldsymbol{X} - \boldsymbol{A}\boldsymbol{X} - \boldsymbol{B}\boldsymbol{U}_0)$$

$$(9)$$

3. Control Solution

3.1 Uncertainty and Disturbance Estimator

Standard filter designs:

- Low-pass filters
- \bullet *a* filter
- General linear filter of order k

Motivation:

- Practical limitations on cut-off frequency of low-pass filter
- State derivative information availability for *α* filter
- Improve filter design using system error dynamics

Error dynamics:

$$X(s) = -[sI - (A - BK)]^{-1} \times (I - G_f(s))D(s)$$
$$X(s) = Z(s)D(s)$$
(13)

Disturbance estimation error:

$$\tilde{\boldsymbol{D}}(s) = \boldsymbol{D}(s) - \hat{\boldsymbol{D}}(s)$$

$$= (\boldsymbol{I} - \boldsymbol{G}_f(s))\boldsymbol{D}(s)$$

$$\tilde{\boldsymbol{D}}(s) = \boldsymbol{W}(s)\boldsymbol{D}(s)$$
(14)

Proposed targeted filter:

- Maximize disturbance attenuation effect at most significant frequency
- Combination of linear filter and bandpass filter

$$g_{ij} = \frac{2\omega_1 s + \omega_1^2}{s^2 + 2\omega_1 s + \omega_1^2} + K\left(\frac{\frac{\omega_2}{Q}\mu + s^2}{s^3 + s^2 + \frac{\omega_2}{Q_2}s + \omega_2^2}\right) \quad (15)$$

Comparison to low-pass filter:

 $G_{f_{lp}}(s)$, low-pass filter matrix $G_{f_n}(s)$, proposed filter matrix

Error dynamics:

Disturbance Estimation Error:

Frequency identification:

- Frequency of disturbance is required to design filter
- With UDE, disturbances are lumped, combined frequency response required
- Frequency content can be obtained by analyzing spectral density of state signals

Fig 5: Power spectral density of state variables during harrier aerobatic maneuver.

3. Control Solution 3.3 Simulation Results

Harrier maneuver test case:

- Control law test on harrier maneuver linearized system
- Goal to maintain altitude and pitch angle ($\theta = 45^{\circ}$), $\theta = \alpha$ with no wind

3. Control Solution 3.3 Simulation Results

Fig 6: Comparison of altitude tracking problem while maintaining harrier maneuver, with low-pass filter (left) and the novel proposed filter (right).

Conclusion:

- This paper discusses the use of targeted UDE filtering to improve disturbance rejection capabilities, with application to a fixed-wing UAV system performing a harrier maneuver
- Filter design uses disturbance frequency content and system dynamics

Thank you!

Follow us on LinkedIn!

University of Toronto Institute for Aerospace Studies 4925 Dufferin Street Toronto, Ontario, Canada Email: pravin.wedage@flight.utias.utoronto.ca Website:

www.flight.utias.utoronto.ca

