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Project Background

- Using UAVs to perform automated crop monitoring
is essential in the agricultural industry.

- Key challenge: planning and control.

- This talk presents a control scheme to control a
fixed-wing drone to follow the desired path.

P v crop field
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Fig. 1 Automated Crop Monitoring



Project Background

UTIAS
Why fixed-wing drone?

- Range and endurance Fixed-wing vs quadrotor
- Payload capacity

Parrot DJI

Source: https://newatlas.com/parrot-sequoia-crop-sensor/41727/ Source: https://enterprise-insights.dji.com/blog/drones-for-farms
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Fig. 2 Fixed-wing vs Quadrotor



Problem formulation

UTIAS
- Two primary challenge: planning and control.
E A |
- The goal of this work: a flight control framework so P L By
that the drone can fly according to typical scanning A w7 A Y A D*
patterns. A S
P S
- Maintain stable flight for sensor scanning. i o
- Back-and-forth and spiral scanning patterns
consisting straight-line segments and circular arcs. Fig. 3 Back-and-forth and spiral scanning patterns
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Contribution &Ery
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. . |
On-going research inner loop
= Path control based on the Control X,V .
augmented system (CAS). < aircraft €

- C* control algorithm.!

———> CAS based control |e—-—

- Machine Learning for disturbance estimation

. . . [5]
and compensation: gausssian process >

learning and compensation Xd, Vd
<
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The Aircraft Model

UTIAS

- Standard fixed-wing aircraft dynamics!"

3o m1)1=L1+Y1+D1+T1+mg,
3 x[=l’1

Jopt+wgJwp=1p

ZRZ . "
Rip=Ripwy
[D, [D
L-_-L(qom(-/ra;5e) Y| =RipRpw | Y
Y: Y(qoo) (_]; f»a,ﬁ»6a,6r) LI L

D = L(qm’ C_I, a,ﬁ,ée) TB =f-[(q001 ﬁ,é;f,a;ﬁ,60y5ay6r)

[1] Stevens, Brian L., Frank L. Lewis, and Eric N. Johnson. Aircraft control and simulation: 3| [—_—————-—
dynamics, controls design, and autonomous systems. John Wiley & Sons, 2015. 7

Camera Battery

XY UNIVERSITY OF TORONTO Fig. 4 Aircraft Model




Motor and Propeller Model

- The motor is modeled as a DC
motor:

(]Ia

dt ('mdU R [a i L

b i s

Voltage input Resistance Inductance ~ Back EMF:
Input: Throttle

Motor torque: 7 = "'II('I"Z.-a,

Back EMF: ey = Kow

Institute for Aerospace Studies

X UNIVERSITY OF TORONTO

UTIAS

wrop

DC motor

Propeller

Fig. 5 Motor-propeller connection

Voltage
source

DC motor

Fig. 6 DC motor model
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Propeller Thrust Model

- The propeller is modeled as a shaft under

torque. pe e AN
- Gyroscopic effects are ignored for small drone.
The shaft dynamics: Io=71— Torop )
jT—
Motor torque Resistance torque by the propeller °
V' Thrust and power n
io: = — Cr= ’ C -
The advanced ratio:  .J 7 coefficients: r=[fU)) p=fU))

The thrust: The required power and torque:

i - Crpvd* = 4n’Crpw?d? p

o Y 3 15
prop — TpropW — (-’P/)V d

Torop: = Ar2C P /)\',«)2(15

P

UTIAS

Lookup Table for Thrust and Power Coefficients
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Thurst coefficient CT
Power coefficient C,
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Advance ratio

Fig. 7 Propeller Thrust and Power
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Longitudinal Inner Loop "= o+ =24 :ﬁf‘y
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-  Control Augmented System (CAS)!"is — Normal load
A » cos
widely used in fly-by-wire systems of T )
commercial aircraft. * +
¢ cos %}

Stick command
\ Secon —————>

-  For drones, stick command can be
used to control the longitudinal motion.

.
Y

Fig. 8 Longitudinal CAS diagram

[1] Niedermeie, Dominik, and Anthony A. Lambregts. "Fly-by-wire augmented manual control-basic design
considerations." International Congress of the Aeronautical Sciences. Vol. 100. 2012. 12




The Altitude Hold Control Cb/éry
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Convert the altitude difference to altitude rate

B Stick command

- Oe,con
o @—» P >
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Fig. 9 Altitude Hold Control
Climb rate different to ‘virtual stick input’




The Auto Throttle/ Airspeed Control

Veon
/
6T

Trim throttle /

Fig. 10 Airspeed Control

&
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The Bank angle/ Yaw rate control @E‘?

Cascade Control

UTIAS

Fig. 11 Bank angle control
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The Bank angle/ Yaw rate control (Con’d) jbfry
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4 = Yemd

Yemd + —>|>

Fig. 12 Yaw angle control
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Fig. 13 Yaw channel damping




. Path switched by
Planned Trajectory upper-evel logic
UuTiAasS
- All the path segments are on the same
height for the crop monitoring mission.
- The speed may vary when the drone flies )
on different path segments P S P :
IR e
by ava >
g
3 B Ao

Fig. 14 Typical flight patterns for a crop
monitoring mission
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Horizontal Straight-Line Path Following Control

- Treat the auto throttle control and the heading angle control as the

inner loop.

- Convert the horizontal error distance into the heading angle

command

1. Calculate the horizontal error distance from the

desired path.

Yo s 1 » _.-/ _,/
error distance = Untarie — Uoath

2. Convert the error distance to the heading angle

command

Upper limit: ©/2
Lower limit: -m/2

Controller gain =-0.013 I

Desired
heading angle W4

Transformed
coordinate system

X

Heading angle
command

Original
coordinate system

UTIAS

@ Endpoint

Straight path
to be followed

» Desired heading angle ¥4

/ )
Heading angle ¥

Error
distance

@ Starting point

Fig. 15 Straight-line path following control
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Horizontal Circular Path Following

- Convert the radius error and the rate change of
radius to yaw rate command.

- Use yaw rate to adjust the cruising radius and
angular velocity.

X Heading angle ¥

Endpoint

+ Desired
\ radius R’
\

Original
coordinate system

Transformed
coordinate system

Circular path
to be followed o
Direction

Starting point

Fig.16 Circular path coordinate system

P
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1.  Transforming the position of the aircraft to the

path coordinate system and calculate the actual
cruise radius.

R=+V2?+y?=+/(x—H)?+ (y — K)?

2. Calculate the rate of change of the radius:

_2Az—-H)x+2(y—H)y 2z'2+9'y
C2/z-H2+({y—-K?

/',I/,IZ + !//2

3. Set the desired angular speed (steady-state
yaw rate):

AR

*

o Yturn
Vd = ———
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Horizontal Circular Path Following (Cont'd)

4. Calculate the desired rate of
change of ARd:  _ _ _ _ _ _ _ _ ____ e o e _____ .

Upper limit: 6
Lower limit: -6

e

AR, =k,AR

Approach the
5. Calculate yaw rate command:
Ve=1a+ks(AR-ARg)

*

x4+ y'y

where AR = —— 'U;'d _ Jturn :
T x2 g2 7Y R —,
— Fig. 17 Circular arc path following control
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Overall Diagram of Control Design
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Desired A .Desired
Proposed Straight-line velocity V altitude hyyax
ﬂiotlljt ath [ “Ipath-following 4 ¥ |
= Hiate . Flight
: —>»{Auto-throttle—>Altitude hold = States
machine dynamics
" > Circular
\ ) "|path-following

Fig. 18 The overall Controller Diagram
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Simulation in Simulink

Aircraft Dynamics

(e o
[ v
[ground_info] ] Ground

Flight_data [airframeBUS]

‘Aircraft Dynamics

FSC and Autopilot

[airframeBUS] aeroBus

control cmd [control_cmd]
[switch_info] switch_info

FSC and Autopilot

Path Following

[airframeBUS] Aircraft data

switch_info [switch_info]

Path Following

Ground Condition
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Weather Condition
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Fig. 19 Simulink diagram




Parameters

e emperical formula + xfoill

P

UTIAS

Symbol RE=21%10" | RE=32x10°
Cpo 0.038 0.035

kot 0.073 0.073

CrLao (1/deg) 0.08 0.08

Vop (km/h) 45 45

Vstau (km/h) 28* 28*

L/D 9.5 9.5

maxr

= Stability derivatives Symbol | Value
R SR Total Lift Slope (/rad) Cra 5.22
Ibar=977 MR TR e Static Margin K 0.18
il ¥es topmer ol . Static Longitudinal Stability Cota -0.96
et e S - Dynamic Longitudinal Stability omq | -19.73
= Bt e Neutral Point B 0.56
2~ ——, Zero AOA Pitching Moment 'm0 0.19

Ht=22 ¢
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Simulation result: Straight-line path following Cﬁ/ér?
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Fig. 20 Straight-line path following o4




Simulation result: Circular path following
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Fig. 21Circular path following
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Simulation Complete Crop Field Monitoring

Proposed Flight Path and Flight Path in Simulation
T T T T T

- Crop field
Proposed flight path 1
600 |- Flight path in simulation = ,/ A
7 N
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Fig. 22 The path for crop scanning
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Conclusion and Future work

- Aflight control scheme for a fixed-wing
drone to perform crop monitoring mission
is presented.

Next step:

-  Current stabilization scheme is treated as
the inner loop.

- Gaussian process to estimate and
compensate for residual unmodelled

dynamics.
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