

Trajectory Control of A Fixed-wing Crop Monitoring Drone: A Case Study

CASI AERO Nov 14-16 2023

Dr. Longhao Qian¹, Yi Lok Lo², Dr. Hugh H.T. Liu¹

1. University of Toronto, Institute for Aerospace Studies, Canada

2. University of Hong Kong, Department of Mechanical Engineering, Hong Kong, China

Presenter: Dr. Longhao Qian

2023/11/15

Institute for Aerospace Studies

Dr. Longhao Qian University of Toronto, Institute for Aerospace Studies, Canada Yi Lok Lo University of Hong Kong, Department of Mechanical Engineering, Hong Kong, China

Dr. Hugh H.T. Liu University of Toronto, Institute for Aerospace Studies, Canada

FLIGHT SYSTEMS AND CONTROL LAB

Table of Contents

- Background and problem formulation
- Aircraft nonlinear model
- Longitudinal and lateral controller design
- Simulations and discussions
- Conclusion and future work

Project Background

- Using UAVs to perform automated crop monitoring is essential in the agricultural industry.
- Key challenge: planning and control.
- This talk presents a control scheme to control a fixed-wing drone to follow the desired path.

Fig. 1 Automated Crop Monitoring

Project Background

Why fixed-wing drone?

- Range and endurance
- Payload capacity

Parrot

Source: https://newatlas.com/parrot-sequoia-crop-sensor/41727/

Source: https://enterprise-insights.dji.com/blog/drones-for-farms

Institute for Aerospace Studies UNIVERSITY OF TORONTO

Fig. 2 Fixed-wing vs Quadrotor

Fixed-wing vs quadrotor

DJI

Problem formulation

- Two primary challenge: planning and control.

- The goal of this work: a flight control framework so that the drone can fly according to typical scanning patterns.
- Maintain stable flight for sensor scanning.

- Back-and-forth and spiral scanning patterns consisting straight-line segments and circular arcs.

Fig. 3 Back-and-forth and spiral scanning patterns

Related works

- Classic linearized control: pole placement, LQG ^[1]
- LQR ^[2]
- Nonlinear and MPC^[3]

- Contribution:

On-going research

- Path control based on the Control augmented system (CAS).
- C* control algorithm.^[4]
- Machine Learning for disturbance estimation and compensation: gausssian process^[5]

Stevens, Brian L., Frank L. Lewis, and Eric N. Johnson. Aircraft control and simulation: dynamics, controls design, and autonomous systems. John Wiley & Sons, 2015.
 Ashari, Ahmad, et al. "Flight Trajectory Control System on Fixed Wing UAV using Linear Quadratic Regulator." International Journal of Engineering Research and (2019).
 Kang, Yeonsik, and J. Karl Hedrick. "Linear tracking for a fixed-wing UAV using nonlinear model predictive control." IEEE Transactions on Control Systems Technology 17.5 (2009): 1202-1210.

Contribution

[4] Niedermeie, Dominik, and Anthony A. Lambregts. "Fly-by-wire augmented manual control-basic design considerations." International Congress of the Aeronautical Sciences. Vol. 100. 2012.

[5] Cao, Gang, Edmund M-K. Lai, and Fakhrul Alam. "Gaussian process model predictive control of an unmanned quadrotor." Journal of Intelligent & Robotic Systems 88 (2017): 147-162.

The Aircraft Model

- Standard fixed-wing aircraft dynamics^[1]

$$\Sigma_{T}: \begin{cases} m\dot{v}_{I} = L_{I} + Y_{I} + D_{I} + T_{I} + mg_{I} \\ \dot{x}_{I} = v_{I} \end{cases};$$

$$\Sigma_{R}: \begin{cases} J\dot{\omega}_{B} + \omega_{B}^{\times} J\omega_{B} = \tau_{B} \\ \dot{R}_{IB} = R_{IB}\omega_{B}^{\times} \end{cases};$$

$$L = L(q_{\infty}, \bar{q}, \alpha, \delta_{e}) \\ Y = Y(q_{\infty}, \bar{q}, \bar{r}, \alpha, \beta, \delta_{a}, \delta_{r}) \end{cases} \begin{bmatrix} D_{I} \\ Y_{I} \\ L_{I} \end{bmatrix} = R_{IB}R_{BW} \begin{bmatrix} D \\ Y \\ L \end{bmatrix}$$

$$D = L(q_{\infty}, \bar{q}, \alpha, \beta, \delta_{e}) \qquad \tau_{B} = f_{\tau}(q_{\infty}, \bar{p}, \bar{q}, \bar{r}, \alpha, \beta, \delta_{e}, \delta_{a})$$

[1] Stevens, Brian L., Frank L. Lewis, and Eric N. Johnson. Aircraft control and simulation: dynamics, controls design, and autonomous systems. John Wiley & Sons, 2015.

Motor and Propeller Model

- The motor is modeled as a DC motor:

Fig. 6 DC motor model

Propeller Thrust Model

NIVERSITY OF TORONTO

Longitudinal Inner Loop

[1] Niedermeie, Dominik, and Anthony A. Lambregts. "Fly-by-wire augmented manual control-basic design considerations." International Congress of the Aeronautical Sciences. Vol. 100. 2012.

The Altitude Hold Control

Convert the altitude difference to altitude rate

The Auto Throttle/ Airspeed Control

Fig. 10 Airspeed Control

The Bank angle/ Yaw rate control

Cascade Control

Fig. 11 Bank angle control

The Bank angle/ Yaw rate control (Con'd)

Fig. 13 Yaw channel damping

Planned Trajectory

- All the path segments are on the same height for the crop monitoring mission.
- The speed may vary when the drone flies _ on different path segments

ZERSITY

Fig. 14 Typical flight patterns for a crop monitoring mission

Horizontal Straight-Line Path Following Control

- Treat the auto throttle control and the heading angle control as the inner loop.
- Convert the horizontal error distance into the heading angle command
- 1. Calculate the horizontal error distance from the desired path.

error distance = $y'_{plane} - y'_{path}$

2. Convert the error distance to the heading angle command

Institute for Aerospace Studies

NIVERSITY OF TORONTO

• Endpoint

Fig. 15 Straight-line path following control

Horizontal Circular Path Following

- Convert the radius error and the rate change of radius to yaw rate command.
- Use yaw rate to adjust the cruising radius and angular velocity.

- UTIAS
- 1. Transforming the position of the aircraft to the path coordinate system and calculate the actual cruise radius.

$$R = \sqrt{x^{\prime 2} + y^{\prime 2}} = \sqrt{(x - H)^2 + (y - K)^2}$$

2. Calculate the rate of change of the radius:

$$\Delta \dot{R} = \frac{2(x-H)\dot{x} + 2(y-H)\dot{y}}{2\sqrt{(x-H)^2 + (y-K)^2}} = \frac{x'\dot{x} + y'\dot{y}}{\sqrt{x'^2 + y'^2}}$$

3. Set the desired angular speed (steady-state yaw rate):

$$\dot{\psi}_d = \frac{V_{turn}^*}{R^*}$$

19

Horizontal Circular Path Following (Cont'd)

Overall Diagram of Control Design

Fig. 18 The overall Controller Diagram

Simulation in Simulink

Fig. 19 Simulink diagram

Parameters

-

emperical formula + xfoil

		UTIAS
Symbol	$RE = 2.1 \times 10^5$	$RE = 3.2 \times 10^5$
C_{D0}	0.038	0.035
k_{CL}	0.073	0.073
$C_{L\alpha} \ (1/\text{deg})$	0.08	0.08
$V_{op} ~(\mathrm{km/h})$	45	45
$V_{stall} (\rm km/h)$	28*	28*
L/D_{max}	9.5	9.5

Stability derivatives	Symbol	Value
Total Lift Slope (/rad)	$C_{L\alpha}$	5.22
Static Margin	K_n	0.18
Static Longitudinal Stability	$C_{m\alpha}$	- <mark>0.96</mark>
Dynamic Longitudinal Stability	C_{mq}	-19.73
Neutral Point	h_n	0.56
Zero AOA Pitching Moment	C_{m0}	0.19

Simulation result: Straight-line path following

Fig. 20 Straight-line path following

Simulation result: Circular path following

Institute for Aerospace Studies UNIVERSITY OF TORONTO

and and a second

Fig. 21Circular path following

Simulation Complete Crop Field Monitoring

Institute for Aerospace Studies

JNIVERSITY OF TORONTO

Fig. 22 The path for crop scanning

Conclusion and Future work

- A flight control scheme for a fixed-wing drone to perform crop monitoring mission is presented.

Next step:

- Current stabilization scheme is treated as the inner loop.
- Gaussian process to estimate and compensate for residual unmodelled dynamics.

