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1. Motivation

m In recent years there has been a growing interest in the
possibilities of aerial mobility using Electric Vertical Takeoff and
Landing, or e-VTOL aircraft. These vehicles combines feature
from Fixed-Wing and Rotor-wing vehicles.

m e-VTOL aircraft combine the maneuvering capabilities of
multi-rotors with the greater range and endurance as well as
flight speeds of fixed-wing aircraft
m We aim to develop a customized e-VTOL aircraft flight simulator
built from existing obsolete fixed-wing simulator hardware.
Further, our mission is to connect this modified flight simulator to
research on aspects of operation or control of e-VTOL aircraft.
=%
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2. Introduction

m Recent advancement in the electric-Vertical Take off and Landing
(e-VTOL) aircraft sector brings the question of whether the
technology will be fully autonomous, or remotely piloted, or with
actual crew onboard.

m There are inherent challenges in operation of such aircraft
configurations:

m Propellers wake interactions.
m Lack of flight test data.
m Non-linearities in thrust, drag, and actuation.

m One of the flight regimes requiring further investigation was the
transition from hovering to forward flight.

m In this regime, the vehicle moves from a helicopter hover in still
air and gains forward speed to transition to fixed wing
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2. Introduction

m An example of transition regime is shown in the diagram below:

Propulsive force

.

L vonans
Veocost.

(a) Different transition regimes for e-VTOL (b) Velocities and Force Distribution on e-VTOL during transition

Figure 2: e-VTOL Transition: Tilt-rotor example
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2. Introduction

m e-VTOL aircraft, due to their hybrid configuration, need
rethinking.

m They exhibit aerodynamics interaction between propellers,
fuselage, and operate in regimes shared between a helicopter
and fixed-wing aircraft.

m Some of the common challenges for e-VTOL vehicles are:

m Rotor-fuselage and rotor-wings interactions.

m Lack of empirical data from flight tests.
m Challenging control characteristics:

B Control degradation after rotor failures;
B transition region between fixed-wing and helicopter motion;
B rotor tilting mechanism, to mention a few.

F

UTIAS

Mohammad Zaheed Elahi Kahooker and Dr. Hugh H.-T. Liu | Intelligent Control for Electric-Vertical Take Off and Landing (e-VTOL) Aircraft 6/28



A -

~&- o

<
Motivation Introduction Literature Distgibution Thrust and Lift Requirements Momentum Analysis Simulator Development Conclusion
- -
= .“ - ‘

3. Literature Distribution
3.1 Intelligent Control for Transition Flight

Many of literature rely on model-based methods and have
shortcomings if the models are not accurately representative.
Making our case for Intelligent Control for transition flight promising.

m 250 papers surveyed.
m 28 papers of high relevance.
m divided into categories below:

[ I | I |

Trajectory Aer of e- E_VTOL &y T“""& Novel e-VTOL
Simulation

Optimization Interaction/Effects VTOL Dynamics 2 Aircraft Controllers
Solutions

d n dolli

Figure 3: Distribution of Literature
for e-VTOL Control [2], [3], [4], [5], [6], [7], [8]

F
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4. Thrust and Lift requirements for e-VTOL
4.1 Example: Tiltrotor e-VTOL Aircraft

Propulsive force

Rotor lift,L | v

Wyx + V. sing
V.co8é

V.. cos¢

w + Vsing

Figure 3: Velocity and Forces on Tilt-rotor e-VTOL [9]
Specifications and flight condition:

Table 1: Specifications for Example Tilt-rotor e-VTOL Aircraft [1]

m (kg) 5 (m?) b (m) ¢ (m) CLay (NACA — 2412) p (%) W (N)

F

2000 24 15 1.6 0.20 1.225 20000
UTIAS
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4.1 Example: Tiltrotor e-VTOL Aircraft

1
Lyying = §PV§OSCLa:0 (1)
Tvertical - WCOS(&) (2)
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Figure 4: Propeller Lift and Wing Lift

Lift (N): NACA 2412 Low Speed at Zero AoA CI0:
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To sustain the weight, we need about V = 85m/s.
Assuming forward acceleration a = 9.81%; and no drag. to get to 85
m/s it will take 9 seconds approximately. Meaning:

V=at+ Vy =981t (4)
Lift equation will be modified with respect to time:

Luing = % 0(9.811)*SCra—o (5)

Similarly, we assume 10 seconds to deploy to fully horizontal e-VTOL
configuration, this gives a tilting rate of 9 degrees/sec, giving:

E=&=9 (6)
Vertical thrust will be modified with respect to time as:

Tvericat = Weos(Et) = Weos(9t) (7)@
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Figure 5: Wing Lift and Vertical Thrust Combined Effects

Finally, the combined effort will be given:

Lioar = Tyerticar + Lwing
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Figure 5: Forward Acceleration Effect and Tilt-rate Effects on Lift

m Following conclusions can be drawn from above investigation:

m Forward acceleration impacts wing lift.
m Tilting rate impact loss of lift for combined propeller + wing. @

= Nonlinear effects.
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5. Momentum Analysis of e-VTOL Aircraft in
Transition
5.1 Induced velocity v; in Forward Flight

From momentum studies for helicopters [9] we have:
T = 2inv; = 2(pAU)v; (9)

Or:

T = ZpAvi\/(Voocosf)z + (Voosing + v;)? (10)

We re-arrange in terms of hover condition, T = 2pAv,>
2
Vi

Vi = (11)
V (Voocos€)? + (Voosiné + v;)?
Define following parameters:
In-flow ratio Aand tip-speed ratio (advance ratio) p:
Vaosin€ + v; Vaocosé /bgb“
= 5 ¢ = 12
A QR and - p QR ( Luﬁé
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Therefore arriving at

Voosing n Vi
QR QR

These equations modify the thrust equation shown earlier in terms of in-flow
ratios:

A= = ptané + \; (13)

2
M= (14)

/AZ +u2
Where we have hover inflow ratio \; = 1/Cr/2. The solution for in-flow ratio
will be:
&
2/ N2+ p?

Which can be solved for Anumerically. Results for different disk Angle of /béb\
Attack (or tilt angle in case of e-VTOL aircraft) are shown in next page: oA

A = ptang + (15)
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75 Inflow ratio as function of forward-speed ratio for several rotor disks AcA
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Figure 7: Inflow ratio vs. Forward speed ratio: Helicopter vs. Tilt-rotor e-VTOL

m Nonentities of induced in-flow ratio resulting in non-linearity of
thrust distribution. pcy
m strong dependence on AoA or tilt angle. o
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5.2 Intelligent Control Based on Learning from Data

We showed two examples of nonentities in developing a model for our
e-VTOL vehicle. There are additional factors that can cause
additional modelling complexities for the e-VTOL configuration:

m Wing Drag: Drag Coefficient C, can vary significantly from
nominal value due to multiple propellers on-wing.

m interference effects between propellers, wing, fuselage.

m Tilting mechanism, it's acceleration £ will result in counter
pitch-up moment of the e-VTOL vehicle air frame, introducing
additional AoA to the inflow equation.

m Overlap of in-flows: due to propellers proximity to each other.

This is where we believe we would see a promising data-driven

approach that can demonstrate safe close-loop performance using
learning based control. J/béb

UTIAS
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Figure 8: Intelligent Control learning from fusion of data and model
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6. Development of e-VTOL Flight Slmulator

As a stepping stone towards our research, two important milestones
were to happen to provide us assurance that our FSC Simulator can
be a suitable platform:

m Be able to use MATLAB/Simulink for visualization of aircraft
states;

m re-activate the FSC Simulator to make it suitable for e-VTOL
aircraft.

For the first step, | focused on development of basic aircraft
visualization on MATLAB/Simulink, and the Research Civil Aircraft
Model (RCAM a twin-engine Fixed-Wing transport category
aircraft [10] [11]) plus MATLAB/Simulink Aerospace Blockset for
visualization of aircraft states was constructed.

F
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6. Development of e-VTOL Flight Simulator

-

m Cost-effective: We took elements of the existing fixed-wing setup
and built an e-VTOL type simulator around it.

m Uses X-Plane for visualization, Air Manager for instrumentation,
Matlab/Simulink for research.

m Built to resemble modern e-VTOL cockpit.

F

Figure 9: FSC e-VTOL Simulator Setup based on RCAM uTias
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6. Development of e-VTOL Flight Simulator

6.1 Simulator Block Diagram

V|

1 crovene coommares on
[ R
Figure 10: Intelligent Control Learning from fusion of data and model uTiAas
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6. Development of e-VTOL Flight Simulator

6.2 Simulator System Architecture

Projection Screen
150 Degree Immersive Field of View

Monitor 1 Monitor 1 Monitor 1
Field of View: 50 Deg Field of View: 50 Deg Field of View: 50 Deg
Visual Rotation Offset: Visual Rotation Offset Visual Rotation Offset:
-50 Degrees 0 Degrees +50 Degrees
VGA/HDMI/DP Connectivity I Flight Controls:
i 1- Sidestick/Yoke
Wioxiae € 2-Throttle Quadrant
-Attitude and 3- Rudder Pedals
Heading Reference
System (AHRS) usB
FSC Research Laptop Connection

-Flight Trajectory

Running

1- MATLAB/Simulink
2-X-Plane
3- Air Manager

F

Figure 11: Architecture for Proposed e-VTOL Simulator based on FSC Simulator
UTIAS
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6. Development of e-VTOL Flight Simulator
6.3 Open Loop Simulation

With equal thrust command on Th; and Th, and initial cruise velocity
of ug = 85% we have following open loop response for ;,, = 180s:
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Figure 12: Open Loop Response to equal throttle command UTIAS
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6. Development of e-VTOL Flight Simulator
6.4 Open Loop Simulation

Simulating a roll and pitch command by pilot between #, = 0s and
to = 40s we have following open loop response will be:

-
3

Figure 13: Open Loop Response to equal throttle command umAs
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7. Conclusion

Nonlinear RCAM Simulator implemented.
Phase 1: FSC Simulator Modification.
Learning-Based Intelligent Control research.
Problem of Transition Flight of e-VTOL identified.
Upcoming:
m Phase 2: Preparation of e-VTOL Flight Simulator.
m Refining problem description.
m Learning Based Intelligent Control vs. existing controllers.

F
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