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Abstract—Trust is a foundational element in human interaction
with Unmanned Aerial Vehicles (UAVs). However, quantifying
trust has posed a significant challenge. This research aims to
establish a framework for defining and quantitatively measuring
trust within the domain of Advanced Air Mobility (AAM), inte-
grating engineering and psychological perspectives. The primary
objective of this study is to design empirical experiments aimed at
evaluating and measuring trust during unmanned aerial vehicles
or drone operations. To achieve this goal, we categorize trust di-
mensions and use line integrals for quantitative trust assessment.
The second objective of this research is to capture the calibration
of trust levels for users, enabling them to place an appropriate
level of trust in a system based on the system’s capabilities.
The results confirm the possibility of quantitatively measuring
trust, highlighting experimental participants’ increasing reliance
on the system’s capabilities over time. Future research will focus
on further experimentation to comprehend the impact of various
factors on trust.

Index Terms—UAV, AAM, Human-Robot Interaction, Trust,
Safety, Performance

I. INTRODUCTION

Trust is a basis of human interaction with Unmanned
Aerial Vehicles (UAVs) or Unmanned Aerial Systems (UAS),
particularly in the growing field of Advanced Air Mobility
(AAM) systems. AAM, defined as a safe and automated
air transportation system, has seen rapid advancements in
UAS technology [1]. One of the significant challenges in this
domain is guaranteed obstacle clearance or collision avoid-
ance from a safety perspective. Consequently, operators find
themselves in complex and demanding roles, relying on their
own judgment to perform a safe and efficient operation while
avoiding collision. Autonomous or semi-automated flight may
help to address the concern, to the extent that the machine’s
autopilot function is perceived to be trustworthy.

Quantifying trust and determining the optimal level of trust
in automation represent significant challenges in the automa-
tion industry. Addressing these challenges requires further
research and experimentation to develop effective trust models.
These models are essential for ensuring the design of safe,
efficient and reliable automated systems [2].

II. RELATED WORKS

As depicted in Figure 1, the relationship between Automa-
tion Capacity and Trust is central. Drones often operate in
close proximity to various objects when performing mission
tasks such as surveys, mapping, and delivery. This situation
may force operators to override automation, inadvertently
elevating the risk of improper actions, thus jeopardizing overall
system safety and reliability [3]. Conversely, excessive trust
in automation can also lead to issues as operators may fail to
recognize system misbehaviour, leading to failures to prevent
preventable accidents [4]. This underscores the critical need
for a balanced approach to automation, requiring operators
to make informed decisions regarding system reliance and
ensuring that users maintain trust levels in agreement with
the system’s capabilities.

Fig. 1: An illustration of the relationship between Automation
Capacity and Trust [5].

The study of human-robot trust emphasizes the importance
of transparency in automation’s capabilities, allowing users to
calibrate their trust levels accurately. Achieving the correct
level of trust requires users to possess ”Calibrated trust,”
aligning their trust with the system’s capabilities [4].

Previous research has explored trust in human-robot interac-
tion. O’Neil [6] emphasized the distinction between trust and
being trustworthy, highlighting the need for trust to be earned.
Recognizing the need for trust to be earned, it is understood979-8-3503-1579-0/24/$31.00 ©2024 IEEE



that a single experiment with a single set of measurements
cannot solely reveal the level of trust an operator places in
a system; rather, it measures the system’s trustworthiness. To
address this, our experimental method implemented multiple
runs to provide operators with opportunities to earn trust.

Psychological research conducted by Plaks [7] emphasizes
the significance of psychological factors in shaping trust,
factors such as humanness, autonomy, and emotions. Ac-
knowledging the substantial role that psychological factors
can play in influencing an operator’s trust in a system, it
becomes apparent that our experimental design must prior-
itize simplicity and naturalness, avoiding any interventions
that could potentially trigger emotional responses from the
operators. This careful approach is crucial in ensuring that
our ‘baseline’ measurements remain unaffected by emotional
factors, allowing us to gauge trust in its purest form.

The classification of trust into three distinct categories
of 1) Rational, 2) Affective and 3) Normative provides a
comprehensive framework for understanding its multi aspects
nature. Within the Rational category, trust finds its foundation
in the process of logical decision-making, as trustors care-
fully consider past actions and evaluate the advantages and
disadvantages associated with the trustee. Affective trust, in
contrast, delves into the realm of emotional bonds, as it is
predicated on the belief that the trustee holds goodwill towards
the trustor. This form of trust places a strong emphasis on the
underlying motivations of the trustee. Lastly, Normative trust
is based on moral values and ethical principles. Trustors who
subscribe to this category anticipate that the trustee’s actions
will consistently align with these shared values [8]. Applying
these trust classifications to UAV-human trust presents chal-
lenges due to the absence of emotions and moral values in
UAVs. Therefore, our research primarily centers on rational
trust, where individuals make logical decisions based on prior
actions, advantages, and disadvantages.

Measuring a qualitative feature of a system, such as trust, is
challenging but achievable through various methods. Different
aspects of trust between humans and the system can be
measured [9] [10]. Logical trust, based on rational decision-
making, has been explored previously. Freddy et al. [11]
associated the number of operator overrides of automation
as an indication of distrust in the device’s autonomous func-
tioning. [12] They introduced a variable, Relative Expected
Loss (REL), to assess this type of trust. In a related study,
de Visser et al. [13], assessed users’ total time spent flying
in manual mode and similar parameters. The results indicated
that parameters related to performance are acceptable metrics
to assess trust. In this study, we aim to measure logical trust
in greater depth by operationalizing the concepts of optimality
and efficiency. Our goal is to quantify and measure rational
trust by comparing past actions to current ones and conducting
multiple runs to quantify changes in users’ trust with repeated
experience [14].

III. METHODS

We note that the fundamentals explored in this research
are not limited to our specific experimental paradigm. The
primary objective is to develop tools capable of quantitatively
measuring trust.

Although we implemented our concepts in a MATLAB
simulation, we suggest that the methods described here are
generalizable across different experimental settings, whether
simulations or actual flight tests. These methods and analytic
techniques allow researchers to assess trust levels within
their own customized experiments, thereby opening doors to
innovative approaches for enhancing and calibrating trust in a
wide range of contexts.

A. Basic Thought Experiment

The primary objective was to mathematically model the
development of rational trust. Rational trust relies on a logical
decision-making process by the trustor, involving the consid-
eration of past actions and an assessment of the pros and cons
of the trustee [8]. Building on this definition and recognizing
the distinction between trustworthiness and trust, we designed
a method that allows researchers to quantitatively measure
earned trust over time. To achieve this, the technique must
be repetitive, spanning multiple runs, ensuring that trust is
measured cumulatively.

Fig. 2: An illustration of a map with an obstacle located at the
center alongside two fight path trajectories. The c trajectory
represents a potential flight path. The g trajectory illustrates
the shortest flight path, and optimal, trajectory to complete the
task.

In our thought experiment, we commence with the most
basic interaction involving a drone: flying directly from point
A to point B. To introduce the concept of trust into this
scenario, we add an obstacle. The task entails navigating the
drone from point A to B while avoiding any collision with the
obstacle. It’s natural to anticipate that the operator will opt for
a flight path that maintains a comfortable margin of distance
from the obstacle to ensure a safe and collision-free path.

Next, the operators are asked to repeat the task multiple
times. They are instructed to prioritize safety and obstacle
avoidance while simultaneously striving for an optimal flight
path (in terms of distance). We restrict the flight speed to



a single setting, meaning that operators can optimize their
approach only by flying more directly to the destination.
As depicted in Figure 2, the most optimal, direct, trajectory
involves choosing a diagonal path that passes directly through
the obstacle. However, they must still deviate from the obstacle
to ensure no collision occurs. Our hypothesis is that as users
gain more experience and consider their past actions, they will
gradually become more adept at playing optimally, reflecting
increasing higher rational trust. Our expectation is that users
will start with a flight path denoted as “c” which maintains
a considerable distance from the obstacle to ensure safety.
Over multiple runs, we anticipate that their trajectories will
converge toward a more optimal trajectory, denoted as “g”
as shown in Figure 2. Thus, we operationalize rational trust
as the gradual convergence of trajectories over multiple runs.
This convergence can be evaluated by measuring change in
the distance difference, denoted as D in the following.

|c− g| = D

In the following sections, we will present our method for
measuring this form of trust, which builds on this basic
principle.

B. Formulation of Rational Trust

In our methodology, we employ mathematical equations to
quantitatively model rational trust. Operators are placed in a
scenario in which they must navigate from point (x1,y1) to
(x2,y2), avoiding obstacles, as depicted in Figure 2. We denote
the subtraction between the actual trajectory and the shortest
possible trajectory as “σ.” To determine this difference, we
utilize the principles of line integrals. Subtracting the line
integrals of these two paths can yield a value that serves as
our trust factor:∣∣∣∣∫

C

f(x, y) ds−
∫
g

g(x, y) ds

∣∣∣∣ = σ (1)

To facilitate comparisons of σ for multiple runs with varying
map settings, such as different optimal trajectory lengths, we
use division rather than subtraction between the actual and
shortest paths. The division always results in a ratio, enabling
us to compare different runs:∣∣∣∣∣

∫
C
f(x, y) ds∫

g
g(x, y) ds

∣∣∣∣∣ = σ′ (2)

This division between the actual trajectory and the shortest
possible trajectory provides an alternative measure of the trust
coefficient, denoted as “σ′.” Higher trust is associated with a
trajectory closer to the optimal path, resulting in a σ′ value
closer to 1. Conversely, as users deviate further from the
optimal path, σ′ increases, reaching values significantly greater
than 1. As operators engage in more runs, we hypothesize
that they will gain increasing trust. We anticipate an inverse
relationship between the frequency of task repetition and
the value of σ′. The observed negative trend between the
number of runs and σ′ serves as the final trust measurement,

confirming that the quantified value represents the trust earned
during these runs.∑n

i=1(xi − x̄)(σ′
i − σ̄′)√∑n

i=1(xi − x̄)2
√∑n

i=1(σ
′
i − σ̄′)2

= r (3)

To quantify this relationship, we utilize Pearson correlation,
denoted as “r”, where n represents the total number of runs,
xi stands for the run number.

We hypothesize that the calculated “r” value will be neg-
ative. That is, participants’ mean deviation from the optimal
trajectory will decrease as the number of attempts increases.

C. Simulation Implementation

In the simulation, participants are tasked with flying from
point A to B while prioritizing obstacle avoidance, much
like operating a real drone. We acknowledge that participant
reactions may differ between a simulation and real-world
drone operation, but our goal is to test the reliability and
robustness of our measurement technique for application in
both simulation and real flight tests.

Participants are instructed to fly the shortest path while
avoiding collisions in a situated 3D MATLAB environment.
The simulation is presented to them in a simplified 2D top-
down view. This simplification minimizes complexity and
allows users to focus exclusively on their assigned tasks.

Dijkstra’s search algorithm is employed to calculate the
shortest path efficiently by iteratively examining nodes with
the smallest distance from the source node and adjusting
distances to their neighbouring nodes [14].

The task is repeated 30 times to enable participants to
gradually build trust. Limiting the runs to 30 prevents partic-
ipant fatigue, which could impact performance. The starting
and ending points are consistent, but random obstacles with
varying numbers and radii are introduced in each run to
prevent map memorization. To minimize external influences
on participants’ responses, the simulation maintains uniformity
in starting and ending points and map complexity.

D. Experimental Design

Our method allowed us to investigate how much control par-
ticipants give to a simulated drone that offers both automatic
and manual control modes. Experimental participants (n=40)
commenced the simulation in automatic mode, whereby the
drone followed a distance-optimized trajectory to reach the
endpoint. However, this mode carried a notable risk of col-
lision when encountering obstacles, and participants were
unaware of the auto-generated planned trajectory until the
end of each run. They understood that the automatic mode
followed the most optimal path but also carried an uncertain
risk of collision.

Conversely, the manual mode allowed participants to strate-
gically place waypoints, guiding the drone along a straight path
to each point. Participants could pause the game by pressing
the spacebar, enabling them to switch between automatic and
manual modes or to continue in their current mode.



Fig. 3: The simulation panel used in the experiment featured a consistent starting point at (0,0) and an endpoint at (30,30) for
all participants across various maps. Red circles represented obstacles of varying locations and sizes.

As illustrated in Figure 3, the green line represents the most
optimal path starting from the initial point. The blue segments
of the flight path indicate when the automatic mode was active,
while the black line signifies the time when the manual mode
was engaged.

Importantly, participants had the freedom to switch between
automatic and manual control modes. All participants were
provided with the same set of maps for navigation. The flight
trajectory combines both automatic and manual modes. In
the preceding section, we referred to participants’ chosen
trajectory as the “actual trajectory.” In contrast, the green
trajectory, labelled as the “planned trajectory,” represents the
most optimal path.

As shown in Figure 3, a feedback panel on the left displayed
performance indicators: a full red bar for collisions, a yellow
bar for the ongoing run, and a green bar for successful runs.
The length of the green bar reflected participant performance,
with longer bars indicating better performance and shorter
bars indicating poorer performance. This visual feedback aided
participants in assessing their performance.

To familiarize participants with the game dynamics, they
underwent three demo runs before the main data collection
phase. Each subsequent run featured distinct obstacle maps.
Throughout the experiment, various types of data were col-
lected, including interaction points (spacebar presses), location
information, actions taken, distances to the closest obstacle,
and the tracked trajectory, represented as a sequence of

locations with associated lengths. With this comprehensive
dataset, our analysis sought to provide quantitative insights
into participant behaviour and to measure trust within the
experimental context.

The advantage of using the manual mode is a reduced
risk, as participants have the freedom to place waypoints that
allow for direct flight. However, the disadvantage is that the
drone will likely not follow the most optimal trajectory, as
participants tend to create a new trajectory that steers well
clear of a looming obstacle. In contrast, the fr-valueautomatic
mode offers the advantage of following the optimal path, but
it comes with a safety risk. Combining these two modes (by
switching between the two) provides participants with the
opportunity to balance these two risk contingencies, between
safety and optimality.

E. Participants

Data were collected from a sample of 40 participants,
primarily composed of undergraduate students enrolled in the
introductory psychology course at the University of Toronto.
Participants willingly took part in the experiment to earn par-
tial course credit. The study adhered to strict privacy standards
and data protection rules, governed by Canadian laws and local
regulations related to human subject research and data privacy
[16]. No data were collected until the university’s Research
Ethics Board (REB) granted formal approval. The participants’
prior experience with drone operation was not mandatory, as
the simulation provided a dynamic 2D view and required no



specific expertise. Control commands were limited to selecting
points and choosing a strategy to play. To facilitate meaningful
comparisons, all 30 maps were maintained identical for every
participant.

IV. RESULTS

We assessed σ′ across 30 runs by dividing the actual trajec-
tory’s length by the planned length. This measurement enabled
us to assess the difference between the paths and determine
whether, by the end of 30 runs, their actual path converged to
the most optimal path, aligning with our expectations of their
trust development.

Fig. 4: The”σ′ vs. run number” plot for a random participant

Figure 4 serves as a representative example of the data
collected for a randomly selected participant, number 11.
In this visualization, green dots are successful runs with no
crashes, yellow dots represent fully autonomous mode runs
where the participant did not switch modes and remained
entirely in auto mode, while red dots denote runs where
the participant’s simulated drone crashed before reaching the
destination. The green plotted run indicates a negative trend
for successful runs.

When considering only the successful runs for this partici-
pant, the decreasing values of σ′ throughout the runs indicate
that the user is gradually earning trust. A challenge arises when
a participant crashes into an obstacle, as indicated by the red
data points in Figure 4. In such runs, the actual trajectory is
shorter than the planned trajectory, not due to differences in
skill or trust, but because the participant was unable to reach
the destination and crashed mid-flight. This disparity makes
direct comparisons between crash runs and successful runs
problematic. To address this issue, we proposed a solution:
terminating the planned trajectory to the closest point where
the simulated drone crashed. This adjustment allowed us to
align the planned length of crash runs with the rest of the
data, making the trajectories comparable for analysis.

Figure 5 displays the same dataset from the same participant
but with a calibration process applied to the crash runs,
which involves adjusting their planned trajectory lengths in

Fig. 5: The”σ′ vs. run number” plot for a random participant
where crash runs are corrected in relation to the crash points.

relation to the crash points. This adjustment results in a more
coherent and meaningful representation of the data. After
the adjustment, the crash points align with the overall trend.
The red line represents the overall trend of both crashes
and successful runs. As depicted, the trend has a significant
negative slope, a pattern consistent with increasing trust during
the runs. Yellow data points represent autonomous modes
where participants handed off control, allowing the system to
operate independently. These runs have been excluded from
our analysis as they lack direct participant interaction, and
we have omitted them from the dataset for further analysis.
We applied the same measurement techniques and conducted
performance analysis for all 40 participants across the 30
runs, consolidating the results into a single plot as shown in
Figure 6. In this final panel, all crash runs have been adjusted,
and fully autonomous runs have been excluded due to no
interaction. The 30 runs are plotted in order against the σ′

for all 40 participants. In each run column, we have 40 data
points.

The σ′ value was calculated for each participant in each run
using equation (2) and is illustrated in Figure 6. The average
σ′ is depicted over the 30 runs for all participants in blue lines,
showing a negative trend.

40 participants completed a total of 30 runs each, resulting
in a dataset of 1,200 runs. The calculated r-value, using
σ′ obtained through Equation (2) and serving as input for
Pearson’s relation in Equation (3), is -0.2287. The p-value,
measured for the r calculations, to validate the statistical
importance for the same dataset consistently remained below
10−12 indicating an extremely low likelihood that this pattern
occurred by chance. It is noteworthy that while the slope and
average slope could be used to assess the trend of σ′, we
utilized r-value for easier assessment, considering the variation
in slope numbers relative to the measurement setup.



Fig. 6: The σ′ vs. run number” plot for all 40 participants
where crash runs are corrected in relation to the crash points

V. CONCLUSION

As depicted in Figure 6, we expected to observe a negative
trend in σ′ as a function of run numbers. This negative trend
suggests that over the course of 30 runs, the actual trajectory
that participants take tends to converge toward the optimal
path, consistent with the development of rational trust. The
trust level is calibrated over the runs by allowing participants
to experiment with switching between modes, discovering
the right balance of trust and improving their performance
toward the optimal trajectory. The r-value is equal to -0.2287.
This value aligns with our initial hypothesis. The negative
value signifies the convergence of the actual flight path with
the planned trajectory over 30 runs. The absolute value of
0.2287 falls within the range considered small to moderate
in experimental behavioral science research [17]. The small
p-value of 10−12 indicates that the likelihood of the results
being due to chance is negligible. This supports the reliability
of our findings and the suitability of a total of 40 participants
for the experiment.

In summary, the statistical analyses provide evidence of this
method’s ability to quantitatively measure rational trust. They
suggest that users consistently improve their efficiency as they
grow more acquainted with the task. This approach aims to
improve the user experience and ensure trust aligns well with
the system’s capabilities and performance. Our future work
will involve exploring additional methods to understand the
influence of various factors on rational trust.

Future Work

The result serves as a robust validation of this method’s
capability to quantitatively measure rational trust in an au-
tonomous vehicle. As we refine this method to measure
rational trust, our future research endeavours will extend to
a more comprehensive understanding of trust calibration. This
will involve further experimentation to precisely calibrate trust
levels. We aim to collect different variables during the data
collection process. This will enable us to construct additional

measurement tools that assess rational trust while consider-
ing more various influencing factors such as “proximity to
obstacles,” “usage of different modes,” and more. We will
employ these extra measurement tools to assess rational trust
from different perspectives and consider various factors in
our experiments. This approach aims to improve the user
experience and ensure trust aligns well with the system’s
capabilities and performance.
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